Secular- and merger-built bulges in barred galaxies

Méndez-Abreu, J.; Debattista, V. P.; Corsini, E. M.; Aguerri, J. A. L.
Bibliographical reference

Astronomy and Astrophysics, Volume 572, id.A25, 16 pp.

Advertised on:
12
2014
Number of authors
4
IAC number of authors
2
Citations
93
Refereed citations
88
Description
Context. Historically, galaxy bulges were thought to be single-component objects at the center of galaxies. However, this picture is now questioned since different bulge types with different formation paths, namely classical and pseudobulges, have been found coexisting within the same galaxy. Aims: We study the incidence and nature of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. Methods: We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterized. Results: We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). Thus, we demonstrate the high incidence of composite bulges (70%) in barred galaxies. We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We denote as secular-built those composite bulges that are made up of structures associated with secular processes, such as pseudobulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built bulges are those where structures with different formation paths coexist within the same galaxy, i.e., a classical bulge coexisting with a secular-built structure (pseudobulge, central disk, or B/P). Three bulges of this kind were found in the sample. We notice the importance of detecting kinematic structures such as σ-drops to identify composite bulges. A high percentage (~80%) of galaxies were found to host σ-drops or σ-plateaus in our sample, revealing their high incidence in barred galaxies. Conclusions: The high frequency of composite bulges in barred galaxies points toward a complex formation and evolutionary scenario. Moreover, the evidence of coexisting merger- and secular-built bulges reinforce this idea. We discuss how the presence of different bulge types with different formation histories and timescales can constrain current models of bulge formation.
Related projects
Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster
Galaxy Evolution in Clusters of Galaxies
Galaxies in the universe can be located in different environments, some of them are isolated or in low density regions and they are usually called field galaxies. The others can be located in galaxy associations, going from loose groups to clusters or even superclusters of galaxies. One of the foremost challenges of the modern Astrophysics is to
Jairo
Méndez Abreu