The SEGUE Stellar Parameter Pipeline. V. Estimation of Alpha-element Abundance Ratios from Low-resolution SDSS/SEGUE Stellar Spectra

Lee, Young Sun; Beers, Timothy C.; Allende-Prieto, C.; Lai, David K.; Rockosi, Constance M.; Morrison, Heather L.; Johnson, Jennifer A.; An, Deokkeun; Sivarani, Thirupathi; Yanny, Brian
Bibliographical reference

The Astronomical Journal, Volume 141, Issue 3, article id. 90 (2011).

Advertised on:
3
2011
Number of authors
10
IAC number of authors
1
Citations
148
Refereed citations
142
Description
We present a method for the determination of [α/Fe] ratios from low-resolution (R = 2000) SDSS/SEGUE stellar spectra. By means of a star-by-star comparison with degraded spectra from the ELODIE spectral library and with a set of moderately high-resolution (R = 15, 000) and medium-resolution (R = 6000) spectra of SDSS/SEGUE stars, we demonstrate that we are able to measure [α/Fe] from SDSS/SEGUE spectra (with S/N>20/1) to a precision of better than 0.1 dex, for stars with atmospheric parameters in the range T eff = [4500, 7000] K, log g = [1.5, 5.0], and [Fe/H] = [-1.4, +0.3], over the range [α/Fe] = [-0.1, +0.6]. For stars with [Fe/H] <-1.4, our method requires spectra with slightly higher signal-to-noise to achieve this precision (S/N>25/1). Over the full temperature range considered, the lowest metallicity star for which a confident estimate of [α/Fe] can be obtained from our approach is [Fe/H] ~-2.5 preliminary tests indicate that a metallicity limit as low as [Fe/H] ~-3.0 may apply to cooler stars. As a further validation of this approach, weighted averages of [α/Fe] obtained for SEGUE spectra of likely member stars of Galactic globular clusters (M15, M13, and M71) and open clusters (NGC 2420, M67, and NGC 6791) exhibit good agreement with the values of [α/Fe] from previous studies. The results of the comparison with NGC 6791 imply that the metallicity range for the method may extend to ~+0.5.
Related projects
spectrum of mercury lamp
Chemical Abundances in Stars
Stellar spectroscopy allows us to determine the properties and chemical compositions of stars. From this information for stars of different ages in the Milky Way, it is possible to reconstruct the chemical evolution of the Galaxy, as well as the origin of the elements heavier than boron, created mainly in stellar interiors. It is also possible to
Carlos
Allende Prieto