Solar Abundance Corrections Derived Through Three-dimensional Magnetoconvection Simulations

Fabbian, D.; Khomenko, E.; Moreno-Insertis, F.; Nordlund, Å.
Bibliographical reference

The Astrophysical Journal, Volume 724, Issue 2, pp. 1536-1541 (2010).

Advertised on:
12
2010
Number of authors
4
IAC number of authors
3
Citations
58
Refereed citations
47
Description
We explore the effect of the magnetic field when using realistic three-dimensional convection experiments to determine solar element abundances. By carrying out magnetoconvection simulations with a radiation-hydro code (the Copenhagen stagger code) and through a posteriori spectral synthesis of three Fe I lines, we obtain evidence that moderate amounts of mean magnetic flux cause a noticeable change in the derived equivalent widths compared with those for a non-magnetic case. The corresponding Fe abundance correction for a mean flux density of 200 G reaches up to ~0.1 dex in magnitude. These results are based on space- and time-averaged line profiles over a time span of 2.5 solar hours in the statistically stationary regime of the convection. The main factors causing the change in equivalent widths, namely the Zeeman broadening and the modification of the temperature stratification, act in different amounts and, for the iron lines considered here, in opposite directions; yet, the resulting |Δlog epsilonsun(Fe)| coincides within a factor of 2 in all of them, even though the sign of the total abundance correction is different for the visible and infrared lines. We conclude that magnetic effects should be taken into account when discussing precise values of the solar and stellar abundances and that an extended study is warranted.
Related projects
Solar Eruption
Numerical Simulation of Astrophysical Processes
Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and
Daniel Elías
Nóbrega Siverio