Bibcode
Balthasar, H.; Gömöry, P.; González Manrique, S. J.; Kuckein, C.; Kavka, J.; Kučera, A.; Schwartz, P.; Vašková, R.; Berkefeld, T.; Collados, M.; Denker, C.; Feller, A.; Hofmann, A.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Pastor Yabar, A.; Rezaei, R.; Schlichenmaier, R.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Volkmer, R.; von der Lühe, O.; Waldmann, T.
Bibliographical reference
Astronomische Nachrichten, Vol.337, Issue 10, p.1050
Advertised on:
11
2016
Citations
15
Refereed citations
13
Description
Arch filament systems occur in active sunspot groups, where a fibril
structure connects areas of opposite magnetic polarity, in contrast to
active region filaments that follow the polarity inversion line. We used
the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector
in the spectral lines Si I λ1082.7 nm, He I λ1083.0 nm, and
Ca I λ1083.9 nm. We focus on the near-infrared calcium line to
investigate the photospheric magnetic field and velocities, and use the
line core intensities and velocities of the helium line to study the
chromospheric plasma. The individual fibrils of the arch filament system
connect the sunspot with patches of magnetic polarity opposite to that
of the spot. These patches do not necessarily coincide with pores, where
the magnetic field is strongest. Instead, areas are preferred not far
from the polarity inversion line. These areas exhibit photospheric
downflows of moderate velocity, but significantly higher downflows of up
to 30 km s-1 in the chromospheric helium line. Our findings
can be explained with new emerging flux where the matter flows downward
along the field lines of rising flux tubes, in agreement with earlier
results.