Spectroscopic and Photometric Analysis of the HW Vir Star PTF1 J011339.09+225739.1

Wolz, M.; Kupfer, Thomas; Drechsel, Horst; Heber, Ulrich; Irrgang, Andreas; Hermes, J. J.; Bloemen, Steven; Levitan, David; Dhillon, V. S.; Marsh, TomR.
Bibliographical reference

Open Astronomy, Volume 27, Issue 1, pp.80-90

Advertised on:
5
2018
Number of authors
10
IAC number of authors
1
Citations
6
Refereed citations
6
Description
HW Vir systems are rare eclipsing binary systems including a subdwarf B star (sdB) with a faint companion, mostly M-dwarfs. Up to now, 19 HW Vir systems have been published, three of them with substellar companions. We report the spectroscopic as well as photometric observation of the eclipsing sdB binary PTF1 J011339.09+225739.1 (PTF1 J0113) in a close (a=0.722 ± 0.023 R⊙), short period (P = 0.0933731(3)d) orbit. A quantitative spectral analysis of the sdB yields Te.=29280 ± 720 K, log(g)=5.77 ± 0.09 dex, and log(y)=-2.32 ± 0.12. The circular orbital velocity of the sdB of K1=74.2 ± 1.7 km s-1 is derived from the radial velocity curve. Except for the strong reflection effect, no other light contribution of the companion could be detected. The light curves - recorded with ULTRACAM - were analyzed using the Wilson-Devinney code. We find an inclination angle of i=79.88 ± 0.18∘. Because our first attempts to determine q failed, we calculated large grids of synthetic lightcurves for several mass ratios. Because of degeneracy, good solutions for different mass ratios were found - the one at q = 0.24 is consistent with the sdB's canonical mass (MsdB = 0.47 M⊙). Accordingly, the mass of the companion is M2=0.112 ± 0.003 M⊙. The radii of the two components were also derived: RsdB=0.178 ± 0.006 R⊙ and R2 = 0.158 ± 0.009 R⊙. Thus, the results for the secondary are consistent with an M-dwarf as secondary
Type