A study of the capabilities for inferring atmospheric information from high-spatial-resolution simulations

Quintero Noda, C.; Khomenko, E.; Collados, M.; Ruiz Cobo, B.; Gafeira, R.; Vitas, N.; Rempel, M.; Campbell, R. J.; Pastor Yabar, A.; Uitenbroek, H.; Orozco Suárez, D.
Bibliographical reference

Astronomy and Astrophysics

Advertised on:
Number of authors
IAC number of authors
Refereed citations
In this work, we study the accuracy that can be achieved when inferring the atmospheric information from realistic numerical magneto-hydrodynamic simulations that reproduce the spatial resolution we will obtain with future observations made by the 4m class telescopes DKIST and EST. We first study multiple inversion configurations using the SIR code and the Fe I transitions at 630 nm until we obtain minor differences between the input and the inferred atmosphere in a wide range of heights. Also, we examine how the inversion accuracy depends on the noise level of the Stokes profiles. The results indicate that when the majority of the inverted pixels come from strongly magnetised areas, there are almost no restrictions in terms of the noise, obtaining good results for noise amplitudes up to 1 × 10−3 of Ic. At the same time, the situation is different for observations where the dominant magnetic structures are weak, and noise restraints are more demanding. Moreover, we find that the accuracy of the fits is almost the same as that obtained without noise when the noise levels are on the order of 1 × 10−4of Ic. We, therefore, advise aiming for noise values on the order of or lower than 5 × 10−4 of Ic if observers seek reliable interpretations of the results for the magnetic field vector reliably. We expect those noise levels to be achievable by next-generation 4m class telescopes thanks to an optimised polarisation calibration and the large collecting area of the primary mirror.
Related projects
Project Image
Magnetism, Polarization and Radiative Transfer in Astrophysics
Magnetic fields pervade all astrophysical plasmas and govern most of the variability in the Universe at intermediate time scales. They are present in stars across the whole Hertzsprung-Russell diagram, in galaxies, and even perhaps in the intergalactic medium. Polarized light provides the most reliable source of information at our disposal for the
Tanausú del
Pino Alemán
Project Image
Solar and Stellar Magnetism
Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During
Felipe García
Solar Eruption
Numerical Simulation of Astrophysical Processes
Numerical simulation through complex computer codes has been a fundamental tool in physics and technology research for decades. The rapid growth of computing capabilities, coupled with significant advances in numerical mathematics, has made this branch of research accessible to medium-sized research centers, bridging the gap between theoretical and
Daniel Elías
Nóbrega Siverio