Bibcode
Walker, A. R.; Zuntz, J.; Thomas, D.; Swanson, M. E. C.; Tarle, G.; Suchyta, E.; Soares-Santos, M.; Sobreira, F.; Smith, R. C.; Smith, M.; Schubnell, M.; Schindler, R.; Scarpine, V.; Sanchez, E.; Plazas, A. A.; Nord, B.; Miquel, R.; Menanteau, F.; Melchior, P.; March, M.; Maia, M. A. G.; Lahav, O.; Kuehn, K.; Kuropatkin, N.; James, D. J.; Hoyle, B.; Hollowood, D. L.; Honscheid, K.; Gutierrez, G.; Hartley, W. G.; Gschwend, J.; Gruendl, R. A.; Gruen, D.; Gerdes, D. W.; Gaztanaga, E.; García-Bellido, J.; Frieman, J.; Fosalba, P.; Evrard, A. E.; Doel, P.; De Vicente, J.; Davis, C.; da Costa, L. N.; D'Andrea, C. B.; Cunha, C. E.; Carretero, J.; Carrasco Kind, M.; Carnero Rosell, A.; Buckley-Geer, E.; Avila, S.; Brooks, D.; Annis, J.; Abbott, T. M. C.; Abdalla, F. B.; Fischer, J. L.; Kaviraj, S.; Bernardi, M.; Domínguez Sánchez, H.; Huertas-Company, M.
Bibliographical reference
Monthly Notices of the Royal Astronomical Society, Volume 484, Issue 1, p.93-100
Advertised on:
3
2019
Citations
71
Refereed citations
63
Description
Deep learning (DL) algorithms for morphological classification of
galaxies have proven very successful, mimicking (or even improving)
visual classifications. However, these algorithms rely on large training
samples of labelled galaxies (typically thousands of them). A key
question for using DL classifications in future Big Data surveys is how
much of the knowledge acquired from an existing survey can be exported
to a new data set, i.e. if the features learned by the machines are
meaningful for different data. We test the performance of DL models,
trained with Sloan Digital Sky Survey (SDSS) data, on Dark Energy Survey
(DES) using images for a sample of ˜5000 galaxies with a similar
redshift distribution to SDSS. Applying the models directly to DES data
provides a reasonable global accuracy (˜90 per cent), but small
completeness and purity values. A fast domain adaptation step,
consisting of a further training with a small DES sample of galaxies
(˜500-300), is enough for obtaining an accuracy >95 per cent
and a significant improvement in the completeness and purity values.
This demonstrates that, once trained with a particular data set,
machines can quickly adapt to new instrument characteristics (e.g. PSF,
seeing, depth), reducing by almost one order of magnitude the necessary
training sample for morphological classification. Redshift evolution
effects or significant depth differences are not taken into account in
this study.
Related projects
Traces of Galaxy Formation: Stellar populations, Dynamics and Morphology
We are a large, diverse, and very active research group aiming to provide a comprehensive picture for the formation of galaxies in the Universe. Rooted in detailed stellar population analysis, we are constantly exploring and developing new tools and ideas to understand how galaxies came to be what we now observe.
Ignacio
Martín Navarro