Transiting exoplanets from the CoRoT space mission⋆. XXVIII. CoRoT-33b, an object in the brown dwarf desert with 2:3 commensurability with its host star

Csizmadia, Sz.; Hatzes, A.; Gandolfi, D.; Deleuil, M.; Bouchy, F.; Fridlund, M.; Szabados, L.; Parviainen, H.; Cabrera, J.; Aigrain, S.; Alonso, R.; Almenara, J.-M.; Baglin, A.; Bordé, P.; Bonomo, A. S.; Deeg, H. J.; Díaz, R. F.; Erikson, A.; Ferraz-Mello, S.; Tadeu dos Santos, M.; Guenther, E. W.; Guillot, T.; Grziwa, S.; Hébrard, G.; Klagyivik, P.; Ollivier, M.; Pätzold, M.; Rauer, H.; Rouan, D.; Santerne, A.; Schneider, J.; Mazeh, T.; Wuchterl, G.; Carpano, S.; Ofir, A.
Bibliographical reference

Astronomy and Astrophysics, Volume 584, id.A13, 12 pp.

Advertised on:
12
2015
Number of authors
35
IAC number of authors
3
Citations
57
Refereed citations
53
Description
We report the detection of a rare transiting brown dwarf with a mass of 59 MJup and radius of 1.1 RJup around the metal-rich, [Fe/H] = +0.44, G9V star CoRoT-33. The orbit is eccentric (e = 0.07) with a period of 5.82 d. The companion, CoRoT-33b, is thus a new member in the so-called brown dwarf desert. The orbital period is within 3% to a 3:2 resonance with the rotational period of the star. CoRoT-33b may be an important test case for tidal evolution studies. The true frequency of brown dwarfs close to their host stars (P< 10 d) is estimated to be approximately 0.2% which is about six times smaller than the frequency of hot Jupiters in the same period range. We suspect that the frequency of brown dwarfs declines faster with decreasing period than that of giant planets. The CoRoT space mission, launched on December 27th 2006, has been developed and is operated by CNES, with the contribution of Austria, Belgium, Brazil, ESA (RSSD and Science Programme), Germany and Spain. Based on observations made with HARPS (High Accuracy Radial velocity Planet Searcher) spectrograph on the 3.6-m European Organisation for Astronomical Research in the Southern Hemisphere telescope at La Silla Observatory, Chile (ESO program 188.C-0779).Based on observations obtained with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias, in time allocated by the Spanish Time Allocation Committee (CAT).
Related projects
Helio and Asteroseismology
Helio and Astero-Seismology and Exoplanets Search
The principal objectives of this project are: 1) to study the structure and dynamics of the solar interior, 2) to extend this study to other stars, 3) to search for extrasolar planets using photometric methods (primarily by transits of their host stars) and their characterization (using radial velocity information) and 4) the study of the planetary
Savita
Mathur
Projects' name image
Exoplanets and Astrobiology
The search for life in the universe has been driven by recent discoveries of planets around other stars (known as exoplanets), becoming one of the most active fields in modern astrophysics. The growing number of new exoplanets discovered in recent years and the recent advance on the study of their atmospheres are not only providing new valuable
Enric
Pallé Bago