A new explanation for the high temperatures of the solar corona

A frame from the analysed time series showing the umbra region of a sunspot as well as the surrounding photosphere. Credit: SDO, GST, IAC.

Related projects
Project Image
Solar and Stellar Magnetism

Magnetic fields are at the base of star formation and stellar structure and evolution. When stars are born, magnetic fields brake the rotation during the collapse of the mollecular cloud. In the end of the life of a star, magnetic fields can play a key role in the form of the strong winds that lead to the last stages of stellar evolution. During

Tobías
Felipe García
Related news
Solar active region artistic simulation

Every day space telescopes provide spectacular images of the solar activity. However, their instruments are blind to its main driver: the magnetic field in the outer layers of the solar atmosphere, where the explosive events that occasionally affect the Earth occur. The extraordinary observations of the polarization of the Sun’s ultraviolet light achieved by the CLASP2 mission have made it possible to map the magnetic field throughout the entire solar atmosphere, from the photosphere until the base of the extremely hot corona. This investigation, published today in the journal Science

Advertised on
Eclipse de Sol

Caption: Total solar eclipse from Novosibirsk (Russia). In a total eclipse of the Sun, the Moon exactly covers the disk of the Sun. For a few minutes there is almost total darkness (in broad daylight) and you can see the sun's corona, the stars and the brightest planets. Credits: J.C. Married & D. Lopez - starryearth.com. Shelios 2008. An international team led by the University of Queen, of Belfast, and in which the researcher of the Institute of Astrophysics of the Canary Islands (IAC) Andrés Asensio Ramos participates, discovers why the magnetic waves inside the Sun strengthen and grow as

Advertised on