News

This section includes scientific and technological news from the IAC and its Observatories, as well as press releases on scientific and technological results, astronomical events, educational projects, outreach activities and institutional events.

  • Bar fraction distribution as function of the galaxy magnitudes (left panels) and masses (right panels). The bar fraction calculated using all the Hubble types (fT) and only the disk galaxies (fD) are plotted in the upper and bottom panels, respectively. T
    The effects that interactions produce on galaxy disks and how they modify the subsequent formation of bars need to be distinguished to fully understand the relationship between bars and environment. To this aim we derive the bar fraction in three different environments ranging from the field to Virgo and Coma Clusters, covering an unprecedentedly large range of galaxy luminosities (or, equivalently, stellar masses). We confirm that the fraction of barred galaxies strongly depends on galaxy luminosity. We also show that the difference between the bar fraction distributions as a function of
    Advertised on
  • Fields observed with HST for M32 (F1) and M31 (F2) overplotted on a M32 image from ground.
    We use deep Hubble Space Telescope Advanced Camera for Surveys/High Resolution Channel observations of a field within M32 (F1) and an M31 background field (F2) to determine the star formation history (SFH) of M32 from its resolved stellar population. We find that 2-5 Gyr old stars contribute ~40% ± 17% of M32's mass, while ~55% ± 21% of M32's mass comes from stars older than 5 Gyr. The SFH additionally indicates the presence of young (<2 Gyr old), metal-poor ([M/H] ~ –0.7) stars, suggesting that blue straggler stars contribute ~2% of the mass at F1; the remaining ~3% of the mass is in young
    Advertised on
  • The remnant of the SN1006. The surveyed area is indicated by the large green circle. The centre of the survey (the centroid of the X-ray emission) is marked with a green cross, and that of the Ha emission, by the small yellow circle. This is a composite i
    Type-Ia supernovae are thought to occur when a white dwarf made of carbon and oxygen accretes sufficient mass to trigger a thermonuclear explosion. The accretion could be slow, from an unevolved (main-sequence) or evolved (subgiant or giant) star (the single-degenerate channel), or rapid, as the primary star breaks up a smaller orbiting white dwarf (the double-degenerate channel). A companion star will survive the explosion only in the single-degenerate channel. Both channels might contribute to the production of type-Ia supernovae, but the relative proportions of their contributions remain
    Advertised on
  • Spectra of DY Cen (in red) around 400 nm (or 4000 Å). The spectra of the nearby star HD 115842 (in blue) and the Extreme Helium star BD -9 4395 (in green) are also displayed for comparison. Note the presence of a new absorption band at 400 nm (the new 400
    Fullerenes and fullerene-related molecules have been proposed as explanations for unidentified astronomical features such as the intense UV absorption band at 217 nm and the enigmatic diffuse interstellar bands (DIBs), In order to shed light on the a long-standing DIB’s problem, we search high-resolution and high-quality VLT/UVES optical spectra of the hot R Coronae Borealis (RCB) star DY Cen for electronic transitions of the neutral C 60 fullerene molecule and DIBs. We report the non-detection of the strongest C 60 electronic transitions (e.g., those at ∼376, 398, and 402 nm). DIBs towards
    Advertised on
  • Panels (a) and (b) correspond to the observation and best-fitted image for the observation on 2012 May 18. Panel (c) shows observed and modeled scans along the trail of those images. Panels (d), (e), and (f) give the same as (a), (b), and (c), respectivel
    We present observations and an interpretative model of the dust environment of the Main-Belt Comet P/2010 F5 (Gibbs). The narrow dust trails observed can be interpreted unequivocally as an impulsive event that took place around 2011 July 1 with an uncertainty of ±10 days, and a duration of less than a day, possibly of the order of a few hours. The best Monte Carlo dust model fits to the observed trail brightness imply ejection velocities in the range 8-10 cm s –1 for particle sizes between 30 cm and 130 μm. This weak dependence of velocity on size contrasts with that expected from ice
    Advertised on
  • Fig. 1: Top panel: orbital phase shift at the time of the inferior conjunction (orbital phase 0), Tn , of the secondary star in the low-mass black hole X-ray binary XTE J1118+480 versus the orbital cycle number, n, folded on the best-fit parabolic fit. Gr
    We report the detection of an orbital period decay of (dP/dt)= -1.83+-0.66 ms yr–1  in the black hole X-ray binary XTE J1118+480. This corresponds to a period change of –0.85 ± 0.30 μs per orbital cycle, which is ~150 times larger than expected from the emission of gravitational waves. These observations cannot be reproduced by conventional models of magnetic braking even when including significant mass loss from the system. The spiral-in of the star is either driven by magnetic braking under extremely high magnetic fields in the secondary star or by a currently unknown process, which will
    Advertised on