Bibcode
Vrancken, Jasmine; Abdul-Masih, Michael; Escorza, Ana; Menon, Athira; Mahy, Laurent; Marchant, Pablo
Bibliographical reference
Astronomy and Astrophysics
Advertised on:
11
2024
Journal
Citations
1
Refereed citations
0
Description
Context. Binary systems play a crucial role in massive star evolution. Systems composed of B-type and O-type stars are of particular interest due to their potential to lead to very energetic phenomena or the merging of exotic compact objects. Aims. We aim to determine the orbital period variations of a sample of B+B and O+B massive overcontact binaries, with the primary objectives of characterizing the evolutionary timescales of these systems and addressing the existing discrepancy between observational data and theoretical predictions derived from population synthesis models. Methods. We used PERIOD04 to analyze archival photometric data going back a century for a sample of seven binary systems to measure their orbital periods. We then determine the period variations using a linear fit. Results. We find that the period variation timescales of five truly overcontact binary systems align with the nuclear timescale, in agreement with previous findings for more massive overcontact binaries. Additionally, we noticed a clear distinction between the five systems that had been unambiguously classified as overcontact systems and both SV Cen and VFTS 066, which seem to be evolving on thermal timescales and might be misclassified as overcontact systems. Conclusions. In the case of the five overcontact binaries, our results indicate a noticeable mismatch between the observational data and the theoretical predictions derived from population synthesis models. Furthermore, our results suggest that additional physical mechanisms must be investigated to compare the observed variations more thoroughly with theoretical predictions.
Related projects
Physical properties and evolution of Massive Stars
This project aims at the searching, observation and analysis of massive stars in nearby galaxies to provide a solid empirical ground to understand their physical properties as a function of those key parameters that gobern their evolution (i.e. mass, spin, metallicity, mass loss, and binary interaction). Massive stars are central objects to
Sergio
Simón Díaz
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution
Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the
Domingo Aníbal
García Hernández