Formation of Fullerenes in H-containing Planetary Nebulae

García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Stanghellini, L.; Villaver, E.; Shaw, R. A.; Szczerba, R.; Perea-Calderón, J. V.
Bibliographical reference

The Astrophysical Journal Letters, Volume 724, Issue 1, pp. L39-L43 (2010).

Advertised on:
11
2010
Number of authors
8
IAC number of authors
2
Citations
168
Refereed citations
134
Description
Hydrogen depleted environments are considered an essential requirement for the formation of fullerenes. The recent detection of C60 and C70 fullerenes in what was interpreted as the hydrogen-poor inner region of a post-final helium shell flash planetary nebula (PN) seemed to confirm this picture. Here, we present strong evidence that challenges the current paradigm regarding fullerene formation, showing that it can take place in circumstellar environments containing hydrogen. We report the simultaneous detection of polycyclic aromatic hydrocarbons (PAHs) and fullerenes toward C-rich and H-containing PNe belonging to environments with very different chemical histories such as our own Galaxy and the Small Magellanic Cloud. We suggest that PAHs and fullerenes may be formed by the photochemical processing of hydrogenated amorphous carbon. These observations suggest that modifications may be needed to our current understanding of the chemistry of large organic molecules as well as the chemical processing in space.
Related projects
Project Image
Nucleosynthesis and molecular processes in the late stages of Stellar Evolution
Low- to intermediate-mass (M < 8 solar masses, Ms) stars represent the majority of stars in the Cosmos. They finish their lives on the Asymptotic Giant Branch (AGB) - just before they form planetary nebulae (PNe) - where they experience complex nucleosynthetic and molecular processes. AGB stars are important contributors to the enrichment of the
Domingo Aníbal
García Hernández