Severo Ochoa Programme

Research News

  • View of HH204, a Herbig-Haro object in the Orion Nebula. The left panel shows the Orion Nebula observed with the Hubble Space Telescope, picking out the area around HH204. In the right panel, we can see in detail the structure of HH204 and of its apparent companion, HH203. In this panel, the images by the Hubble Space Telescope taken during 20 years and artificially highlighted with different colours show the advance of the jets of gas through the Orion Nebula. Credit: Gabriel Pérez Díaz, SMM (IAC).
    An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) has uncovered, with an new high degree of detail, the physical and chemical effects of the impact of a protostellar jet in the interior of the Orion Nebula. The study was made using observations with the Very Large Telescope (VLT) and 20 years of images with the Hubble Space Telescope (HST). The observations show evidence of compression and heating produced by the shock front, and the destruction of dust grains, which cause a dramatic increase in the gas phase abundance of the atoms of iron, nickel
    Advertised on
  • Scatter plot of oscillation amplitude and damping ratio values for 101 loop oscillation cases. The symbols and their colors indicate the levels of evidence obtained for the nonlinear (NL) and the linear resonant absorption (RA) models.
    The solar coronal heating problem originated almost 80 years ago and remains unsolved. A plausible explanation lies in mechanisms based on magnetic wave energy dissipation. Currently, several linear and nonlinear wave damping models have been proposed. The advent of space instrumentation has led to the creation of catalogues containing the properties of a large number of loop oscillation events. When the damping ratio of the oscillations is plotted against their oscillation amplitude, the data are scattered forming a cloud with a triangular shape. Larger amplitudes correspond in general to
    Advertised on
  • Artist’s impression of the L 98-59 planetary system. Credit: ESO/M. Kornmesser
    An international team of astronomers, in which the Instituto de Astrofísica de Canarias (IAC) has participated, has found an exoplanetary system formed by several planets similar to the inner planets of the Solar System, orbiting around the nearby star L 98-59. Among them there is a planet with half the mass of Venus -the lowest mass exoplanet ever measured using the radial velocity technique-, an oceanic planet, and a planet possibly within the habitable zone.
    Advertised on
  • Artist’s impression of the Nu2 Lupi planetary system. Credit: ESA.
    The exoplanet satellite hunter CHEOPS of the European Space Agency (ESA), in which the Instituto de Astrofísica de Canarias (IAC) is participating along with other European institutions, has unexpectedly detected a third planet passing in front of its star while it was exploring two previously known planets around the same star. This transit, according to researchers, will reveal exciting details about a strange planet “without a known equivalent”.
    Advertised on
  • An example of a nearby spiral galaxy, M81, where the bulge is easily identified as the central redder part, and the disc, dotted with zones where stars are currently forming and appear as blue regions forming spiral arms. Credit: NASA/JPL-Caltech/ESA/Harvard-Smithsonian CfA.
    An international team of scientists led from the Centre for Astrobiology (CAB, CSIC-INTA), with participation from the Instituto de Astrofísica de Canarias (IAC), has used the Gran Telescopio Canarias (GTC) to study a representative sample of galaxies, both disc and spheroidal, in a deep sky zone in the constellation of the Great Bear to characterize the properties of the stellar populations of galactic bulges. The researchers have been able to determine the mode of formation and development of these galactic structures. The results of this study were recently published in The Astrophysical
    Advertised on
  • Artistic impression of the super-Earth in orbit round the red dwarf star GJ-740. Credit: Gabriel Pérez Díaz, SMM (IAC).
    In recent years there has been an exhaustive study of red dwarf stars to find exoplanets in orbit around them. These stars have effective surface temperatures between 2400 and 3700 K (over 2000 degrees cooler than the Sun), and masses between 0.08 and 0.45 solar masses. In this context, a team of researchers led by Borja Toledo Padrón, a Severo Ochoa-La Caixa doctoral student at the Instituto de Astrofísica de Canarias (IAC), specializing in the search for planets around this type of stars, has discovered a super-Earth orbiting the star GJ 740, a red dwarf star situated some 36 light years
    Advertised on