Molecular gas observations and enhanced massive star formation efficiencies in M 100.

Knapen, J. H.; Beckman, J. E.; Cepa, J.; Nakai, N.
Referencia bibliográfica

Astronomy and Astrophysics, v.308, p.27-39

Fecha de publicación:
4
1996
Número de autores
4
Número de autores del IAC
2
Número de citas
54
Número de citas referidas
52
Descripción
We present new J=1->0 ^12^CO observations along the northern spiral arm of the grand-design spiral galaxy M 100 (NGC 4321), and study the distribution of molecular hydrogen as derived from these observations, comparing the new data with a set of data points on the southern arm published previously. We compare these measurements on both spiral arms and on the interarm regions with observations of the atomic and ionized hydrogen components. We determine massive star formation efficiency parameters, defined as the ratio of Hα luminosity to total gas mass, along the arms and compare the values to those in the interarm regions adjacent to the arms. We find that these parameters in the spiral arms are on average a factor of 3 higher than outside the arms, a clear indication of triggering of the star formation in the spiral arms. We discuss possible mechanisms for this triggering, and conclude that a density wave system is probably responsible for it. We discuss several possible systematical effects in some detail, and infer that the conclusions on triggering are sound. We specifically discuss the possible effects of extinction in Hα, or a non-standard CO to H_2_ conversion factor (X), and find that our conclusions on the enhancement of the efficiencies in the arms are reinforced rather than weakened by these considerations. A simple star forming scheme involving threshold densities for gravitational collapse is discussed for NGC 4321, and comparison is made with M 51. We find that the gas between the arms is generally stable against gravitational collapse whereas the gas in the arms is not, possibly leading to the observed arm-interarm differences in efficiency, but also note that these results, unlike the others obtained in this paper, do depend critically on the assumed value for the conversion factor.