Bibcode
Schmidt, W.; von der Lühe, O.; Volkmer, R.; Denker, C.; Solanki, S. K.; Balthasar, H.; Bello Gonzalez, N.; Berkefeld, Th.; Collados, M.; Fischer, A.; Halbgewachs, C.; Heidecke, F.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Popow, E.; Puschmann, K. G.; Schmidt, D.; Sigwarth, M.; Sobotka, M.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Waldmann , T. A.
Referencia bibliográfica
Astronomische Nachrichten, Vol.333, Issue 9, p.796
Fecha de publicación:
11
2012
Número de citas
173
Número de citas referidas
156
Descripción
The 1.5 m telescope GREGOR opens a new window to the understanding of
solar small-scale magnetism. The first light instrumentation includes
the Gregor Fabry Pérot Interferometer (GFPI), a filter
spectro-polarimeter for the visible wavelength range, the GRating
Infrared Spectro-polarimeter (GRIS) and the Broad-Band Imager (BBI). The
excellent performance of the first two instruments has already been
demonstrated at the Vacuum Tower Telescope. GREGOR is Europe's largest
solar telescope and number 3 in the world. Its all-reflective Gregory
design provides a large wavelength coverage from the near UV up to at
least 5 microns. The field of view has a diameter of 150 arcsec. GREGOR
is equipped with a high-order adaptive optics system, with a subaperture
size of 10 cm, and a deformable mirror with 256 actuators. The science
goals are focused on, but not limited to, solar magnetism. GREGOR allows
us to measure the emergence and disappearance of magnetic flux at the
solar surface at spatial scales well below 100 km. Thanks to its
spectro-polarimetric capabilities, GREGOR will measure the interaction
between the plasma flows, different kinds of waves, and the magnetic
field. This will foster our understanding of the processes that heat the
chromosphere and the outer layers of the solar atmosphere. Observations
of the surface magnetic field at very small spatial scales will shed
light on the variability of the solar brightness.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García