The ATST Site Survey

Hill, F.; Beckers, J.; Brandt, P.; Briggs, J. W.; Brown, T.; Brown, W.; Collados, M.; Denker, C.; Fletcher, S.; Hegwer, S.; Horst, T.; Komsa, M.; Kuhn, J.; Lecinski, A.; Lin, H.; Oncley, S.; Penn, M.; Radick, R.; Rimmele, T.; Socas-Navarro, H.; Soltau, D.; Streander, K.
Referencia bibliográfica

American Geophysical Union, Spring Meeting 2005, abstract #SP34A-04

Fecha de publicación:
5
2005
Número de autores
22
Número de autores del IAC
1
Número de citas
0
Número de citas referidas
0
Descripción
The Advanced Technology Solar Telescope (ATST) will be the world's largest aperture solar telescope, and is being designed for high resolution, IR, and coronal research. It must be located at a site that maximizes the scientific return of this substantial investment. We present the instrumentation, analysis and results of the ATST site survey. Two instrumentation sets were deployed at each of six sites to measure seeing as a function of height, and sky brightness as a function of wavelength and off-limb position. Analysis software was developed to estimate the structure function Cn2 as a function of height near the ground, and the results were verified by comparison with in-situ measurements. Additional software was developed to estimate the sky brightness. The statistics of the conditions at the sites were corrected for observing habits and the annualized hours of specific observing conditions were estimated. These results were used to identify three excellent sites suitable to host the ATST: Haleakala, Big Bear and La Palma. Among them, Haleakala is proposed as the optimal location of the ATST, La Palma and Big Bear being viable alternative sites.