The CARMENES search for exoplanets around M dwarfs. A deep learning approach to determine fundamental parameters of target stars

Passegger, V. M.; Bello-García, A.; Ordieres-Meré, J.; Caballero, J. A.; Schweitzer, A.; González-Marcos, A.; Ribas, I.; Reiners, A.; Quirrenbach, A.; Amado, P. J.; Azzaro, M.; Bauer, F. F.; Béjar, V. J. S.; Cortés-Contreras, M.; Dreizler, S.; Hatzes, A. P.; Henning, Th.; Jeffers, S. V.; Kaminski, A.; Kürster, M.; Lafarga, M.; Marfil, E.; Montes, D.; Morales, J. C.; Nagel, E.; Sarro, L. M.; Solano, E.; Tabernero, H. M.; Zechmeister, M.
Referencia bibliográfica

Astronomy and Astrophysics

Fecha de publicación:
10
2020
Número de autores
29
Número de autores del IAC
1
Número de citas
24
Número de citas referidas
19
Descripción
Existing and upcoming instrumentation is collecting large amounts of astrophysical data, which require efficient and fast analysis techniques. We present a deep neural network architecture to analyze high-resolution stellar spectra and predict stellar parameters such as effective temperature, surface gravity, metallicity, and rotational velocity. With this study, we firstly demonstrate the capability of deep neural networks to precisely recover stellar parameters from a synthetic training set. Secondly, we analyze the application of this method to observed spectra and the impact of the synthetic gap (i.e., the difference between observed and synthetic spectra) on the estimation of stellar parameters, their errors, and their precision. Our convolutional network is trained on synthetic PHOENIX-ACES spectra in different optical and near-infrared wavelength regions. For each of the four stellar parameters, Teff, log g, [M/H], and v sin i, we constructed a neural network model to estimate each parameter independently. We then applied this method to 50 M dwarfs with high-resolution spectra taken with CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Échelle Spectrographs), which operates in the visible (520-960 nm) and near-infrared wavelength range (960-1710 nm) simultaneously. Our results are compared with literature values for these stars. They show mostly good agreement within the errors, but also exhibit large deviations in some cases, especially for [M/H], pointing out the importance of a better understanding of the synthetic gap.
Proyectos relacionados
Descubrimiento de un sistema de supertierras orbitando la estrella HD 176986 con aproximadamente 5.7 and 9.2 masas de la Tierra
Estrellas de Baja Masa, Enanas Marrones y Planetas
Se investigan los procesos que conducen a la formación de estrellas de baja masa, enanas marrones y exoplanetas y caracterizar las propiedades físicas de estos astros en varias etapas evolutivas. Las estrellas de muy baja masa y las enanas marrones son probablemente los objetos más numerosos de nuestra Galaxia, pero no por ello están
Rafael
Rebolo López
Image withthe projects' name
Exoplanetas y Astrobiología
La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances
Enric
Pallé Bago