Comet McNaught C/2006 P1: observation of the sodium emission by the solar telescope THEMIS

Sainz Dalda, A.; Doressoundiram, A.; Cremonese, G.; López Ariste, A.; Fulle, M.; Leblanc, F.; Gelly, B.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 482, Issue 1, 2008, pp.293-298

Fecha de publicación:
Número de autores
Número de autores del IAC
Número de citas
Número de citas referidas
Comet McNaught C/2006 P1 was the brightest comet of the last forty years when reaching its perihelion at an heliocentric distance of 0.17 AU. Two days before this perihelion, at an heliocentric distance of 0.2 AU, Themis, a French-Italian solar telescope in the Canary Islands, Spain, observed the Comet sodium emission of McNaught. The measured maximum sodium brightness of the D2 emission line peaked at 900 Mega-Rayleigh. The spatial distribution of the sodium emission with respect to the nucleus of the comet is in agreement with previous observations. It displays a clear sunward-tailward asymmetry that suggests a dichotomy of the sodium sources between a source close to the nucleus and an extended source most probably corresponding to the dust tail. The spatial distribution along the slit of the width and speed of the Doppler Na distribution also suggests such a dichotomy. The sodium ejection rate inferred from this observation agrees with the value of the ejection rate extrapolated from comet Hale-Bopp, taking into account the heliocentric distance of comet McNaught and its significantly larger dust release. If we suppose a similar concentration of sodium atoms in both comets, this observation suggests that the sodium ejection rate from comets McNaught and Hale-Bopp is proportional to the solar flux. Therefore the most probable ejection mechanisms are photo-sputtering, solar wind sputtering, or cometary ion sputtering, and not thermal desorption.
Proyectos relacionados
Imagen del Proyecto
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Felipe García