Bibcode
Centeno, Rebecca; Flyer, Natasha; Mukherjee, Lipi; Egeland, Ricky; Casini, Roberto; del Pino Alemán, Tanausú; Rempel, Matthias
Referencia bibliográfica
The Astrophysical Journal
Fecha de publicación:
2
2022
Revista
Número de citas
5
Número de citas referidas
5
Descripción
In this work, we study the information content learned by a convolutional neural network (CNN) when trained to carry out the inverse mapping between a database of synthetic Ca II intensity spectra and the vertical stratification of the temperature of the atmospheres used to generate such spectra. In particular, we evaluate the ability of the neural network to extract information about the sensitivity of the spectral line to temperature as a function of height. By training the CNN on sufficiently narrow wavelength intervals across the Ca II spectral profiles, we find that the error in the temperature prediction shows an inverse relationship to the response function of the spectral line to temperature, that is, different regions of the spectrum yield a better temperature prediction at their expected regions of formation. This work shows that the function that the CNN learns during the training process contains a physically meaningful mapping between wavelength and atmospheric height.
Proyectos relacionados
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán