Bibcode
Noguchi, Rina; Hirata, Naoyuki; Hirata, Naru; Shimaki, Yuri; Nishikawa, Naoki; Tanaka, Sayuri; Sugiyama, Takaaki; Morota, Tomokatsu; Sugita, Seiji; Cho, Yuichiro; Honda, Rie; Kameda, Shingo; Tatsumi, Eri; Yoshioka, Kazuo; Sawada, Hirotaka; Yokota, Yasuhiro; Sakatani, Naoya; Hayakawa, Masahiko; Matsuoka, Moe; Yamada, Manabu; Kouyama, Toru; Suzuki, Hidehiko; Honda, Chikatoshi; Ogawa, Kazunori; Kanamaru, Masanori; Watanabe, Sei-ichiro
Referencia bibliográfica
Icarus
Fecha de publicación:
1
2021
Revista
Número de citas
8
Número de citas referidas
8
Descripción
The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 mission, is noted to be a spinning top-shaped rubble-pile. Craters are among the most prominent surface features on Ryugu. Their shapes, particularly their depth-to-diameter ratio (d/D), can provide an important proxy for probing both the internal structure and surface processes of planetary bodies. Here, we report d/D of every impact crater on Ryugu using a shape model derived from stereo-photoclinometry. We found that the average, standard deviation, and observed range of d/D for the entire set of craters are 0.09, 0.02, and 0.03-0.15, respectively. Except for possible pit craters, the maximum d/D of large craters on Ryugu (D > 50 m) is close to 0.13, which is comparable with those of fresh simple craters on rocky asteroids, such as Gaspra and Ida. Conversely, the d/D of small craters (D < 50 m) increases with the crater diameter. This behavior implies that a smaller crater on Ryugu is formed as a shallower crater. As on Itokawa, the surface environment on Ryugu likely inhibits craters becoming deep. This especially affects smaller craters, as their normal small depth decreases in the Ryugu environment and they become still more shallow. As a result, small craters rapidly degrade beyond the point where they can be identified as candidate craters. This is likely responsible for the apparent lack of small craters. The d/D has no reliable relationship with the types of crater classification in Hirata et al. (2020). Examination of latitudinal and longitudinal variation in d/D of craters on Ryugu revealed no statistically significant trends.
Proyectos relacionados
Pequeños Cuerpos del Sistema Solar
Este Proyecto estudia las propiedades físicas y composicionales de los llamados pequeños cuerpos del Sistema Solar, que incluyen asteroides, objetos helados y cometas. Entre los grupos de mayor interés destacan los objetos trans-neptunianos (TNOs), incluyendo los objetos más lejanos detectados hasta la fecha (Extreme-TNOs o ETNOs); los cometas, y
Julia de
León Cruz