Bibcode
Shchukina, Nataliya; Trujillo-Bueno, J.
Referencia bibliográfica
The Astrophysical Journal Letters, Volume 731, Issue 1, article id. L21 (2011).
Fecha de publicación:
4
2011
Número de citas
36
Número de citas referidas
29
Descripción
The bulk of the quiet solar photosphere is thought to be significantly
magnetized, due to the ubiquitous presence of a tangled magnetic field
at subresolution scales with an average strength langBrang ~ 100 G. This
conclusion was reached through detailed three-dimensional (3D) radiative
transfer modeling of the Hanle effect in the Sr I 4607 Å line,
using the microturbulent field approximation and assuming that the shape
of the probability density function of the magnetic field strength is
exponential. Here, we relax both approximations by modeling the observed
scattering polarization in terms of the Hanle effect produced by the
magnetic field of a 3D photospheric model resulting from a
(state-of-the-art) magneto-convection simulation with surface dynamo
action. We show that the scattering polarization amplitudes observed in
the Sr I 4607 Å line can be explained only after enhancing the
magnetic strength of the photospheric model by a sizable scaling factor,
F ≈ 10, which implies langBrang ≈ 130 G in the upper photosphere.
We also argue that in order to explain both the Hanle depolarization of
the Sr I 4607 Å line and the Zeeman signals observed in Fe I
lines, we need to introduce a height-dependent scaling factor, such that
the ensuing langBrang ≈ 160 G in the low photosphere and langBrang
≈ 130 G in the upper photosphere.
Proyectos relacionados
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán