Bibcode
Hayes, C. R.; Majewski, Steven R.; Shetrone, Matthew; Fernández-Alvar, E.; Allende Prieto, C.; Schuster, William J.; Carigi, Leticia; Cunha, Katia; Smith, Verne V.; Sobeck, Jennifer; Almeida, Andres; Beers, Timothy C.; Carrera, R.; Fernández-Trincado, J. G.; García-Hernández, D. A.; Geisler, Doug; Lane, Richard R.; Lucatello, Sara; Matthews, Allison M.; Minniti, Dante; Nitschelm, Christian; Tang, Baitian; Tissera, Patricia B.; Zamora, O.
Referencia bibliográfica
The Astrophysical Journal, Volume 852, Issue 1, article id. 49, 18 pp. (2018).
Fecha de publicación:
1
2018
Revista
Número de citas
138
Número de citas referidas
131
Descripción
We find two chemically distinct populations separated relatively cleanly
in the [Fe/H]–[Mg/Fe] plane, but also distinguished in other
chemical planes, among metal-poor stars (primarily with metallicities
[{Fe}/{{H}}]< -0.9) observed by the Apache Point Observatory Galactic
Evolution Experiment (APOGEE) and analyzed for Data Release 13 (DR13) of
the Sloan Digital Sky Survey. These two stellar populations show the
most significant differences in their [X/Fe] ratios for the
α-elements, C+N, Al, and Ni. In addition to these populations
having differing chemistry, the low metallicity high-Mg population
(which we denote “the HMg population”) exhibits a
significant net Galactic rotation, whereas the low-Mg population (or
“the LMg population”) has halo-like kinematics with little
to no net rotation. Based on its properties, the origin of the LMg
population is likely an accreted population of stars. The HMg population
shows chemistry (and to an extent kinematics) similar to the thick disk,
and is likely associated with in situ formation. The distinction between
the LMg and HMg populations mimics the differences between the
populations of low- and high-α halo stars found in previous
studies, suggesting that these are samples of the same two populations.
Proyectos relacionados
Nucleosíntesis y procesos moleculares en los últimos estados de la evolución estelar
Las estrellas de masa baja e intermedia (M < 8 masas solares, Ms) representan la mayoría de estrellas en el Cosmos y terminan sus vidas en la Rama Asintótica de las Gigantes (AGB) - justo antes de formar Nebulosas Planetarias (NPs) - cuando experimentan procesos nucleosintéticos y moleculares complejos. Las estrellas AGB son importantes
Domingo Aníbal
García Hernández
Abundancias Químicas en Estrellas
La espectroscopía de estrellas nos permite determinar las propiedades y composiciones químicas de las mismas. A partir de esta información para estrellas de diferente edad en la Vía Láctea es posible reconstruir la evolución química de la Galaxia, así como el origen de los elementos más pesados que el boro, forjados principalmente en los interiores
Carlos
Allende Prieto