Bibcode
Schaye, J.; Crain, Robert A.; Bower, Richard G.; Furlong, Michelle; Schaller, Matthieu; Theuns, Tom; Dalla Vecchia, C.; Frenk, Carlos S.; McCarthy, I. G.; Helly, John C.; Jenkins, Adrian; Rosas-Guevara, Y. M.; White, Simon D. M.; Baes, Maarten; Booth, C. M.; Camps, Peter; Navarro, Julio F.; Qu, Yan; Rahmati, Alireza; Sawala, Till; Thomas, Peter A.; Trayford, James
Referencia bibliográfica
Monthly Notices of the Royal Astronomical Society, Volume 446, Issue 1, p.521-554
Fecha de publicación:
1
2015
Número de citas
1000
Número de citas referidas
896
Descripción
We introduce the Virgo Consortium's Evolution and Assembly of GaLaxies
and their Environments (EAGLE) project, a suite of hydrodynamical
simulations that follow the formation of galaxies and supermassive black
holes in cosmologically representative volumes of a standard Λ
cold dark matter universe. We discuss the limitations of such
simulations in light of their finite resolution and poorly constrained
subgrid physics, and how these affect their predictive power. One major
improvement is our treatment of feedback from massive stars and active
galactic nuclei (AGN) in which thermal energy is injected into the gas
without the need to turn off cooling or decouple hydrodynamical forces,
allowing winds to develop without predetermined speed or mass loading
factors. Because the feedback efficiencies cannot be predicted from
first principles, we calibrate them to the present-day galaxy stellar
mass function and the amplitude of the galaxy-central black hole mass
relation, also taking galaxy sizes into account. The observed galaxy
stellar mass function is reproduced to ≲ 0.2 dex over the full
resolved mass range, 108 < M*/M⊙
≲ 1011, a level of agreement close to that attained by
semi-analytic models, and unprecedented for hydrodynamical simulations.
We compare our results to a representative set of low-redshift
observables not considered in the calibration, and find good agreement
with the observed galaxy specific star formation rates, passive
fractions, Tully-Fisher relation, total stellar luminosities of galaxy
clusters, and column density distributions of intergalactic C IV and O
VI. While the mass-metallicity relations for gas and stars are
consistent with observations for M* ≳ 109
M⊙ (M* ≳ 1010
M⊙ at intermediate resolution), they are insufficiently
steep at lower masses. For the reference model, the gas fractions and
temperatures are too high for clusters of galaxies, but for galaxy
groups these discrepancies can be resolved by adopting a higher heating
temperature in the subgrid prescription for AGN feedback. The EAGLE
simulation suite, which also includes physics variations and higher
resolution zoomed-in volumes described elsewhere, constitutes a valuable
new resource for studies of galaxy formation.
Proyectos relacionados
Astrofísica Numérica: Formación y Evolución de Galaxias
Entre las cuestiones fundamentales en Astronomía y Astrofísica están la formación y evolución de galaxias. Las escalas de tiempo y tamaño son tan astronómicas que su observación en galaxias individuales es imposible. Solo con el uso de simulaciones numéricas es posible entender la formación de estructuras cósmicas dentro del actual marco
Claudio
Dalla Vecchia