Eclipsing post-common envelope binaries from the Catalina surveys

Parsons, S. G.; Gänsicke, B. T.; Marsh, T. R.; Drake, A. J.; Dhillon, V. S.; Littlefair, S. P.; Pyrzas, S.; Rebassa-Mansergas, A.; Schreiber, M. R.
Referencia bibliográfica

Monthly Notices of the Royal Astronomical Society, Volume 429, Issue 1, p.256-268

Fecha de publicación:
2
2013
Número de autores
9
Número de autores del IAC
0
Número de citas
60
Número de citas referidas
56
Descripción
We analyse the Catalina Real-time Transient Survey light curves of 835 spectroscopically confirmed white dwarf plus main-sequence binaries from the Sloan Digital Sky Survey (SDSS) with g < 19, in search of new eclipsing systems. We identify 29 eclipsing systems, 12 of which were previously unknown. This brings the total number of eclipsing white dwarf plus main-sequence binaries to 49. Our set of new eclipsing systems contains two with periods of 1.9 and 2.3 d, making them the longest period eclipsing white dwarf binaries known. We also identify one system which shows very large ellipsoidal modulation (almost 0.3 mag), implying that the system is both very close to Roche lobe overflow and at high inclination. However, our follow-up photometry failed to firmly detect an eclipse, meaning that either this system contains a cool white dwarf and hence the eclipse is very shallow and undetectable in our red-sensitive photometry or that it is non-eclipsing. Radial velocity measurements for the main-sequence stars in three of our newly identified eclipsing systems imply that their white dwarf masses are lower than those inferred from modelling their SDSS spectra. 13 non-eclipsing post-common envelope binaries were also identified, from either reflection or ellipsoidal modulation effects. The white dwarfs in our newly discovered eclipsing systems span a wide range of parameters, including low-mass (˜0.3 M⊙), very hot (80 000 K) and a DC white dwarf. The spectral types of the main-sequence stars range from M2 to M6. This makes our sample ideal for testing white dwarf and low-mass star mass-radius relationships as well as close binary evolution.