Emergence of an Ultrared, Ultramassive Galaxy Cluster Core at z = 4

Long, Arianna S.; Cooray, Asantha; Ma, Jingzhe; Casey, Caitlin M.; Wardlow, Julie L.; Nayyeri, Hooshang; Ivison, R. J.; Farrah, Duncan; Dannerbauer, Helmut
Referencia bibliográfica

The Astrophysical Journal

Fecha de publicación:
8
2020
Número de autores
9
Número de autores del IAC
1
Número de citas
47
Número de citas referidas
42
Descripción
Recent simulations and observations of massive galaxy cluster evolution predict that the majority of stellar mass buildup happens within cluster members by z = 2, before cluster virialization. Protoclusters rich with dusty, star-forming galaxies (DSFGs) at z > 3 are the favored candidate progenitors for these massive galaxy clusters at z ∼ 0. We present here the first study analyzing stellar emission along with cold dust and gas continuum emission in a spectroscopically confirmed z = 4.002 protocluster core rich with DSFGs, the Distant Red Core (DRC). We combine new Hubble Space Telescope and Spitzer data with existing Gemini, Herschel, and Atacama Large Millimeter/submillimeter Array observations to derive individual galaxy-level properties and compare them to coeval field and other protocluster galaxies. All of the protocluster members are massive (>1010 M☉), but not significantly more so than their coeval field counterparts. Within uncertainty, all are nearly indistinguishable from galaxies on the star-forming versus stellar mass main-sequence relationship and the star formation efficiency plane. Assuming no future major influx of fresh gas, we estimate that these gaseous DSFGs will deplete their gas reservoirs in ∼300 Myr, becoming the massive quiescent ellipticals dominating cluster cores by z ∼ 3. Using various methodologies, we derive a total z = 4 halo mass of ∼1014 M☉ and estimate that the DRC will evolve to become an ultramassive cluster core of mass ≳1015 M☉ by z = 0.
Proyectos relacionados
Proto-cúmulo de galaxias
Gas Molecular y Polvo en Galacias através del Tiempo Cósmico
Dos cuestiones fundamentales en la Astrofísica son la conversión de gas molecuar en estrellas y cómo este proceso físico depende del entorno en todas las escalas, desde sistemas planetarios, cúmulos estelares, galaxias hasta cúmulos de galaxias. El objectivo principal de este proyecto es el de estudiar la formación y evolución de galaxias a partir
Helmut
Dannerbauer