Evolution of tidal disruption candidates discovered by XMM-Newton

Esquej, P.; Saxton, R. D.; Komossa, S.; Read, A. M.; Freyberg, M. J.; Hasinger, G.; García-Hernández, D. A.; Lu, H.; Rodriguez Zaurín, J.; Sánchez-Portal, M.; Zhou, H.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 489, Issue 2, 2008, pp.543-554

Fecha de publicación:
10
2008
Número de autores
11
Número de autores del IAC
1
Número de citas
145
Número de citas referidas
133
Descripción
Context: It has been demonstrated that active galactic nuclei are powered by gas accretion onto supermassive black holes located at their centres. The paradigm that the nuclei of inactive galaxies are also occupied by black holes was predicted long ago by theory. In the past decade, this conjecture was confirmed by the discovery of giant-amplitude, non-recurrent X-ray flares from such inactive galaxies and explained in terms of outburst radiation from stars tidally disrupted by a dormant supermassive black hole at the nuclei of those galaxies. Aims: Due to the scarcity of detected tidal disruption events, the confirmation and follow-up of each new candidate is needed to strengthen the theory through observational data, as well as to shed new light on the characteristics of this type of events. Methods: Two tidal disruption candidates have been detected with XMM-Newton during slew observations. Optical and X-ray follow-up, post-outburst observations were performed on these highly variable objects in order to further study their classification and temporal evolution. Results: We show that the detected low-state X-ray emission for these two candidates has properties such that it must still be related to the flare. The X-ray luminosity of the objects decreases according to theoretical predictions for tidal disruption events. At present, optical spectra of the sources do not present any evident signature of the disruption event. In addition, the tidal disruption rate as derived from the XMM-Newton slew survey has been computed and agrees with previous studies.
Proyectos relacionados
Project Image
Nucleosíntesis y procesos moleculares en los últimos estados de la evolución estelar
Las estrellas de masa baja e intermedia (M < 8 masas solares, Ms) representan la mayoría de estrellas en el Cosmos y terminan sus vidas en la Rama Asintótica de las Gigantes (AGB) - justo antes de formar Nebulosas Planetarias (NPs) - cuando experimentan procesos nucleosintéticos y moleculares complejos. Las estrellas AGB son importantes
Domingo Aníbal
García Hernández