Bibcode
Broock, E. G.; Asensio Ramos, A.; Felipe, T.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
11
2022
Revista
Número de citas
1
Número de citas referidas
1
Descripción
Context. Activity on the far side of the Sun is routinely studied through the analysis of the seismic oscillations detected on the near side using helioseismic techniques such as phase-shift sensitive holography. Detections made through those methods are limited to strong active regions due to the need for a high signal-to-noise ratio. Recently, the neural network FarNet was developed to improve these detections. This network extracts more information from helioseismic far-side maps, enabling the detection of smaller and weaker active regions.
Aims: We aim to create a new machine learning tool, FarNet-II, which further increases FarNet's scope, and to evaluate its performance in comparison to FarNet and the standard helioseismic method for detecting far-side activity.
Methods: We developed FarNet-II, a neural network that retains some of the general characteristics of FarNet but improves the detections in general, as well as the temporal coherence among successive predictions. The main novelties of the new neural network are the implementation of attention and convolutional long short-term memory (ConvLSTM) modules. A cross-validation approach, training the network 37 times with a different validation set for each run, was employed to leverage the limited amount of data available. We evaluate the performance of FarNet-II using three years of extreme ultraviolet observations of the far side of the Sun acquired with the Solar Terrestrial Relations Observatory (STEREO) as a proxy of activity. The results from FarNet-II were compared with those obtained from FarNet and the standard helioseismic method using the Dice coefficient as a metric. Given that the application of the ConvLSTM modules can affect the accuracy as a function of the position on the sequence, we take this potential dependency into account in the evaluation.
Results: FarNet-II achieves a Dice coefficient that improves that of FarNet by over 0.2 points for every output position on the sequences from the evaluation dates. Its improvement over FarNet is higher than that of FarNet over the standard method.
Conclusions: The new network is a very promising tool for improving the detection of activity on the far side of the Sun given by pure helioseismic techniques. Space weather forecasts can potentially benefit from the higher sensitivity provided by this novel method.
Aims: We aim to create a new machine learning tool, FarNet-II, which further increases FarNet's scope, and to evaluate its performance in comparison to FarNet and the standard helioseismic method for detecting far-side activity.
Methods: We developed FarNet-II, a neural network that retains some of the general characteristics of FarNet but improves the detections in general, as well as the temporal coherence among successive predictions. The main novelties of the new neural network are the implementation of attention and convolutional long short-term memory (ConvLSTM) modules. A cross-validation approach, training the network 37 times with a different validation set for each run, was employed to leverage the limited amount of data available. We evaluate the performance of FarNet-II using three years of extreme ultraviolet observations of the far side of the Sun acquired with the Solar Terrestrial Relations Observatory (STEREO) as a proxy of activity. The results from FarNet-II were compared with those obtained from FarNet and the standard helioseismic method using the Dice coefficient as a metric. Given that the application of the ConvLSTM modules can affect the accuracy as a function of the position on the sequence, we take this potential dependency into account in the evaluation.
Results: FarNet-II achieves a Dice coefficient that improves that of FarNet by over 0.2 points for every output position on the sequences from the evaluation dates. Its improvement over FarNet is higher than that of FarNet over the standard method.
Conclusions: The new network is a very promising tool for improving the detection of activity on the far side of the Sun given by pure helioseismic techniques. Space weather forecasts can potentially benefit from the higher sensitivity provided by this novel method.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García