Bibcode
Salvaterra, R.; Della Valle, M.; Campana, S.; Chincarini, G.; Covino, S.; D'Avanzo, P.; Fernández-Soto, A.; Guidorzi, C.; Mannucci, F.; Margutti, R.; Thöne, C. C.; Antonelli, L. A.; Barthelmy, S. D.; de Pasquale, M.; D'Elia, V.; Fiore, F.; Fugazza, D.; Hunt, L. K.; Maiorano, E.; Marinoni, S.; Marshall, F. E.; Molinari, E.; Nousek, J.; Pian, E.; Racusin, J. L.; Stella, L.; Amati, L.; Andreuzzi, G.; Cusumano, G.; Fenimore, E. E.; Ferrero, P.; Giommi, P.; Guetta, D.; Holland, S. T.; Hurley, K.; Israel, G. L.; Mao, J.; Markwardt, C. B.; Masetti, N.; Pagani, C.; Palazzi, E.; Palmer, D. M.; Piranomonte, S.; Tagliaferri, G.; Testa, V.
Referencia bibliográfica
Nature, Volume 461, Issue 7268, pp. 1258-1260 (2009).
Fecha de publicación:
10
2009
Revista
Número de citas
456
Número de citas referidas
375
Descripción
Gamma-ray bursts (GRBs) are produced by rare types of massive stellar
explosion. Their rapidly fading afterglows are often bright enough at
optical wavelengths that they are detectable at cosmological distances.
Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for
GRB080913, and for a galaxy was z = 6.96 (ref. 2). Here we report
observations of GRB090423 and the near-infrared spectroscopic
measurement of its redshift, z = . This burst happened when the Universe
was only about 4 per cent of its current age. Its properties are similar
to those of GRBs observed at low/intermediate redshifts, suggesting that
the mechanisms and progenitors that gave rise to this burst about
600,000,000years after the Big Bang are not markedly different from
those producing GRBs about 10,000,000,000years later.