Bibcode
Wilson, C. D.; Warren, B. E.; Irwin, J.; Knapen, J. H.; Israel, F. P.; Serjeant, S.; Attewell, D.; Bendo, G. J.; Brinks, E.; Butner, H. M.; Clements, D. L.; Leech, J.; Matthews, H. E.; Mühle, S.; Mortier, A. M. J.; Parkin, T. J.; Petitpas, G.; Tan, B. K.; Tilanus, R. P. J.; Usero, A.; Vaccari, M.; van der Werf, P.; Wiegert, T.; Zhu, M.
Referencia bibliográfica
Monthly Notices of the Royal Astronomical Society, Volume 410, Issue 3, pp. 1409-1422.
Fecha de publicación:
1
2011
Número de citas
48
Número de citas referidas
46
Descripción
An analysis of large-area CO J= 3-2 maps from the James Clerk Maxwell
Telescope for 12 nearby spiral galaxies reveals low velocity dispersions
in the molecular component of the interstellar medium. The three lowest
luminosity galaxies show a relatively flat velocity dispersion as a
function of radius while the remaining nine galaxies show a central peak
with a radial fall-off within 0.2-0.4r25. Correcting for the
average contribution due to the internal velocity dispersions of a
population of giant molecular clouds, the average cloud-cloud velocity
dispersion across the galactic discs is 6.1 ± 1.0 km
s-1 (standard deviation of 2.9 km s-1), in
reasonable agreement with previous measurements for the Galaxy and M33.
The cloud-cloud velocity dispersion derived from the CO data is on
average two times smaller than the H I velocity dispersion measured in
the same galaxies. The low cloud-cloud velocity dispersion implies that
the molecular gas is the critical component determining the stability of
the galactic disc against gravitational collapse, especially in those
regions of the disc which are H2 dominated. The cloud-cloud
velocity dispersion shows a significant positive correlation with both
the far-infrared luminosity, which traces the star formation activity,
and the K-band absolute magnitude, which traces the total stellar mass.
For three galaxies in the Virgo cluster, smoothing the data to a
resolution of 4.5 kpc (to match the typical resolution of high-redshift
CO observations) increases the measured velocity dispersion by roughly a
factor of 2, comparable to the dispersion measured recently in a normal
galaxy at z= 1. This comparison suggests that the mass and star
formation rate surface densities may be similar in galaxies from z= 0 to
1 and that the high star formation rates seen at z= 1 may be partly due
to the presence of physically larger molecular gas discs.
Proyectos relacionados
Las Galaxias Espirales: Evolución y Consecuencias
Nuestro grupo pequeño esta bien conocido y respetado internacionalmente por nuestro trabajo inovativo e importante en varios aspectos de la estructura y la evolución de las galaxias espirales cercanas. Usamos principalmente observaciones en varias longitudes de onda, explotando las sinergías que nos permiten responder a las cuestiones más
Johan Hendrik
Knapen Koelstra