Machine Learning for Searching the Dark Energy Survey for Trans-Neptunian Objects

Henghes, B.; Lahav, O.; Gerdes, D. W.; Lin, H. W.; Morgan, R.; Abbott, T. M. C.; Aguena, M.; Allam, S.; Annis, J.; Avila, S.; Bertin, E.; Brooks, D.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Conselice, C.; Costanzi, M.; da Costa, L. N.; De Vicente, J.; Desai, S.; Diehl, H. T.; Doel, P.; Everett, S.; Ferrero, I.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Hinton, S. R.; Honscheid, K.; Hoyle, B.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Ogando, R. L. C.; Palmese, A.; Paz-Chinchón, F.; Plazas, A. A.; Romer, A. K.; Sánchez, C.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Serrano, S.; Smith, M.; Soares-Santos, M.; Suchyta, E.; Tarle, G.; To, C.; Wilkinson, R. D.; DES Collaboration
Referencia bibliográfica

Publications of the Astronomical Society of the Pacific

Fecha de publicación:
1
2021
Número de autores
60
Número de autores del IAC
1
Número de citas
3
Número de citas referidas
3
Descripción
In this paper we investigate how implementing machine learning could improve the efficiency of the search for Trans-Neptunian Objects (TNOs) within Dark Energy Survey (DES) data when used alongside orbit fitting. The discovery of multiple TNOs that appear to show a similarity in their orbital parameters has led to the suggestion that one or more undetected planets, an as yet undiscovered "Planet 9", may be present in the outer solar system. DES is well placed to detect such a planet and has already been used to discover many other TNOs. Here, we perform tests on eight different supervised machine learning algorithms, using a data set consisting of simulated TNOs buried within real DES noise data. We found that the best performing classifier was the Random Forest which, when optimized, performed well at detecting the rare objects. We achieve an area under the receiver operating characteristic (ROC) curve, (AUC) = 0.996 ± 0.001. After optimizing the decision threshold of the Random Forest, we achieve a recall of 0.96 while maintaining a precision of 0.80. Finally, by using the optimized classifier to pre-select objects, we are able to run the orbit-fitting stage of our detection pipeline five times faster.
Proyectos relacionados
Proto-cúmulo de galaxias
Gas Molecular y Polvo en Galacias através del Tiempo Cósmico
Dos cuestiones fundamentales en la Astrofísica son la conversión de gas molecuar en estrellas y cómo este proceso físico depende del entorno en todas las escalas, desde sistemas planetarios, cúmulos estelares, galaxias hasta cúmulos de galaxias. El objectivo principal de este proyecto es el de estudiar la formación y evolución de galaxias a partir
Helmut
Dannerbauer