Bibcode
Mediavilla, E.; Mediavilla, T.; Muñoz, J. A.; Ariza, O.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.
Referencia bibliográfica
The Astrophysical Journal, Volume 741, Issue 1, article id. 42 (2011).
Fecha de publicación:
11
2011
Revista
Número de citas
50
Número de citas referidas
49
Descripción
We derive an exact solution (in the form of a series expansion) to
compute gravitational lensing magnification maps. It is based on the
backward gravitational lens mapping of a partition of the image plane in
polygonal cells (inverse polygon mapping, IPM), not including critical
points (except perhaps at the cell boundaries). The zeroth-order term of
the series expansion leads to the method described by Mediavilla et al.
The first-order term is used to study the error induced by the
truncation of the series at zeroth order, explaining the high accuracy
of the IPM even at this low order of approximation. Interpreting the
Inverse Ray Shooting (IRS) method in terms of IPM, we explain the
previously reported N -3/4 dependence of the IRS error
with the number of collected rays per pixel. Cells intersected by
critical curves (critical cells) transform to non-simply connected
regions with topological pathologies like auto-overlapping or
non-preservation of the boundary under the transformation. To define a
non-critical partition, we use a linear approximation of the critical
curve to divide each critical cell into two non-critical subcells. The
optimal choice of the cell size depends basically on the curvature of
the critical curves. For typical applications in which the pixel of the
magnification map is a small fraction of the Einstein radius, a
one-to-one relationship between the cell and pixel sizes in the absence
of lensing guarantees both the consistence of the method and a very high
accuracy. This prescription is simple but very conservative. We show
that substantially larger cells can be used to obtain magnification maps
with huge savings in computation time.
Proyectos relacionados
Astrofísica Relativista y Teórica
El estudio de las lentes gravitatorias proporciona poderosas herramientas en Astrofísica y Cosmología. Las principales aplicaciones de las lentes gravitatorias en las que se centra este proyecto son las siguientes: (i) estudiar la presencia de subestructura de materia obscura en las galaxias lente a partir de las anomalías en la magnificación de
Evencio
Mediavilla Gradolph