Bibcode
Borrero, J. M.; Franz, M.; Schlichenmaier, R.; Collados, M.; Asensio-Ramos, A.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 601, id.L8, 4 pp.
Fecha de publicación:
5
2017
Revista
Número de citas
9
Número de citas referidas
9
Descripción
Context. The thermal structure of the penumbra below its visible surface
(i.e., τ5 ≥ 1) has important implications for our
present understanding of sunspots and their penumbrae: their brightness
and energy transport, mode conversion of magneto-acoustic waves, sunspot
seismology, and so forth. Aims: We aim at determining the thermal
stratification in the layers immediately beneath the visible surface of
the penumbra: τ5 ∈ [1,3] (≈70-80 km below the
visible continuum-forming layer) Methods: We analyzed
spectropolarimetric data (i.e., Stokes profiles) in three Fe i lines
located at 1565 nm observed with the GRIS instrument attached to the
1.5-m solar telescope GREGOR. The data are corrected for the smearing
effects of wide-angle scattered light and then subjected to an inversion
code for the radiative transfer equation in order to retrieve, among
others, the temperature as a function of optical depth
T(τ5). Results: We find that the temperature
gradient below the visible surface of the penumbra is smaller than in
the quiet Sun. This implies that in the region τ5 ≥ 1
the penumbral temperature diverges from that of the quiet Sun. The same
result is obtained when focusing only on the thermal structure below the
surface of bright penumbral filaments. Conclusions: We interpret
these results as evidence of a thick penumbra, whereby the magnetopause
is not located near its visible surface. In addition, we find that the
temperature gradient in bright penumbral filaments is lower than in
granules. This can be explained in terms of the limited expansion of a
hot upflow inside a penumbral filament relative to a granular upflow, as
magnetic pressure and tension forces from the surrounding penumbral
magnetic field hinder an expansion like this.
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García
Magnetismo, Polarización y Transferencia Radiativa en Astrofísica
Los campos magnéticos están presentes en todos los plasmas astrofísicos y controlan la mayor parte de la variabilidad que se observa en el Universo a escalas temporales intermedias. Se encuentran en estrellas, a lo largo de todo el diagrama de Hertzsprung-Russell, en galaxias, e incluso quizás en el medio intergaláctico. La polarización de la luz
Tanausú del
Pino Alemán