Bibcode
Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 594, id.A20, 65 pp.
Fecha de publicación:
9
2016
Revista
Número de citas
1000
Número de citas referidas
939
Descripción
We present the implications for cosmic inflation of the Planck
measurements of the cosmic microwave background (CMB) anisotropies in
both temperature and polarization based on the full Planck survey, which
includes more than twice the integration time of the nominal survey used
for the 2013 release papers. The Planck full mission temperature data
and a first release of polarization data on large angular scales measure
the spectral index of curvature perturbations to be ns =
0.968 ± 0.006 and tightly constrain its scale dependence to
dns/ dlnk = -0.003 ± 0.007 when combined with the
Planck lensing likelihood. When the Planck high-ℓ polarization data
are included, the results are consistent and uncertainties are further
reduced. The upper bound on the tensor-to-scalar ratio is
r0.002< 0.11 (95% CL). This upper limit is consistent with
the B-mode polarization constraint r< 0.12 (95% CL) obtained from a
joint analysis of the BICEP2/Keck Array and Planck data. These results
imply that V(φ) ∝ φ2 and natural inflation are
now disfavoured compared to models predicting a smaller tensor-to-scalar
ratio, such as R2 inflation. We search for several physically
motivated deviations from a simple power-law spectrum of curvature
perturbations, including those motivated by a reconstruction of the
inflaton potential not relying on the slow-roll approximation. We find
that such models are not preferred, either according to a Bayesian model
comparison or according to a frequentist simulation-based analysis.
Three independent methods reconstructing the primordial power spectrum
consistently recover a featureless and smooth PR(k) over the
range of scales 0.008 Mpc-1 ≲ k ≲ 0.1
Mpc-1. At large scales, each method finds deviations from a
power law, connected to a deficit at multipoles ℓ ≈ 20-40 in the
temperature power spectrum, but at an uncompelling statistical
significance owing to the large cosmic variance present at these
multipoles. By combining power spectrum and non-Gaussianity bounds, we
constrain models with generalized Lagrangians, including Galileon models
and axion monodromy models. The Planck data are consistent with
adiabatic primordial perturbations, and the estimated values for the
parameters of the base Λ cold dark matter (ΛCDM) model are
not significantly altered when more general initial conditions are
admitted. In correlated mixed adiabatic and isocurvature models, the 95%
CL upper bound for the non-adiabatic contribution to the observed CMB
temperature variance is | αnon - adi | < 1.9%, 4.0%,
and 2.9% for CDM, neutrino density, and neutrino velocity isocurvature
modes, respectively. We have tested inflationary models producing an
anisotropic modulation of the primordial curvature power spectrum
findingthat the dipolar modulation in the CMB temperature field induced
by a CDM isocurvature perturbation is not preferred at a statistically
significant level. We also establish tight constraints on a possible
quadrupolar modulation of the curvature perturbation. These results are
consistent with the Planck 2013 analysis based on the nominal mission
data and further constrain slow-roll single-field inflationary models,
as expected from the increased precision of Planck data using the full
set of observations.