Bibcode
Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G. et al.
Referencia bibliográfica
Astronomy and Astrophysics, Volume 599, id.A51, 15 pp.
Fecha de publicación:
2
2017
Revista
Número de citas
56
Número de citas referidas
51
Descripción
The characterization of the Galactic foregrounds has been shown to be
the main obstacle in thechallenging quest to detect primordial B-modes
in the polarized microwave sky. We make use of the Planck-HFI 2015 data
release at high frequencies to place new constraints on the properties
of the polarized thermal dust emission at high Galactic latitudes. Here,
we specifically study the spatial variability of the dust polarized
spectral energy distribution (SED), and its potential impact on the
determination of the tensor-to-scalar ratio, r. We use the correlation
ratio of the angular power spectra between the 217 and 353 GHz channels
as a tracer of these potential variations, computed on different high
Galactic latitude regions, ranging from 80% to 20% of the sky. The new
insight from Planck data is a departure of the correlation ratio from
unity that cannot be attributed to a spurious decorrelation due to the
cosmic microwave background, instrumental noise, or instrumental
systematics. The effect is marginally detected on each region, but the
statistical combination of all the regions gives more than 99%
confidence for this variation in polarized dust properties. In addition,
we show that the decorrelation increases when there is a decrease in the
mean column density of the region of the sky being considered, and we
propose a simple power-law empirical model for this dependence, which
matches what is seen in the Planck data. We explore the effect that this
measured decorrelation has on simulations of the BICEP2-Keck
Array/Planck analysis and show that the 2015 constraints from these data
still allow a decorrelation between the dust at 150 and 353 GHz that is
compatible with our measured value. Finally, using simplified models, we
show that either spatial variation of the dust SED or of the dust
polarization angle are able to produce decorrelations between 217 and
353 GHz data similar to the values we observe in the data.