Bibcode
Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.-J.; Güdel, M.; Janot-Pacheco, E.; Mas-Hesse, M.; Pagano, I.; Piotto, G.; Pollacco, D.; Santos, Ċ.; Smith, A.; Suárez, J.-C.; Szabó, R.; Udry, S.; Adibekyan, V.; Alibert, Y.; Almenara, J.-M.; Amaro-Seoane, P.; Eiff, M. Ammler-von; Asplund, M.; Antonello, E.; Barnes, S.; Baudin, F.; Belkacem, K.; Bergemann, M.; Bihain, G.; Birch, A. C.; Bonfils, X.; Boisse, I.; Bonomo, A. S.; Borsa, F.; Brandão, I. M.; Brocato, E.; Brun, S.; Burleigh, M.; Burston, R.; Cabrera, J.; Cassisi, S.; Chaplin, W.; Charpinet, S.; Chiappini, C.; Church, R. P.; Csizmadia, Sz.; Cunha, M.; Damasso, M.; Davies, M. B.; Deeg, H. J.; Díaz, R. F.; Dreizler, S.; Dreyer, C.; Eggenberger, P.; Ehrenreich, D.; Eigmüller, P.; Erikson, A.; Farmer, R.; Feltzing, S.; Oliveira Fialho, F. de; Figueira, P.; Forveille, T.; Fridlund, M.; García, R. A.; Giommi, P.; Giuffrida, G.; Godolt, M.; da Silva, J. Gomes; Granzer, T.; Grenfell, J. L.; Grotsch-Noels, A.; Günther, E.; Haswell, C. A.; Hatzes, A. P.; Hébrard, G.; Hekker, S.; Helled, R.; Heng, K.; Jenkins, J. M.; Johansen, A.; Khodachenko, M. L.; Kislyakova, K. G.; Kley, W.; Kolb, U.; Krivova, N.; Kupka, F.; Lammer, H.; Lanza, A. F.; Lebreton, Y.; Magrin, D.; Marcos-Arenal, P.; Marrese, P. M.; Marques, J. P.; Martins, J.; Mathis, S.; Mathur, S. et al.
Referencia bibliográfica
Experimental Astronomy, Volume 38, Issue 1-2, pp. 249-330
Fecha de publicación:
11
2014
Revista
Número de citas
1000
Número de citas referidas
890
Descripción
PLATO 2.0 has recently been selected for ESA's M3 launch opportunity
(2022/24). Providing accurate key planet parameters (radius, mass,
density and age) in statistical numbers, it addresses fundamental
questions such as: How do planetary systems form and evolve? Are there
other systems with planets like ours, including potentially habitable
planets? The PLATO 2.0 instrument consists of 34 small aperture
telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence)
providing a wide field-of-view (2232 deg 2) and a large
photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag)
stars in wide fields to detect and characterize planets down to
Earth-size by photometric transits, whose masses can then be determined
by ground-based radial-velocity follow-up measurements. Asteroseismology
will be performed for these bright stars to obtain highly accurate
stellar parameters, including masses and ages. The combination of bright
targets and asteroseismology results in high accuracy for the bulk
planet parameters: 2 %, 4-10 % and 10 % for planet radii, masses and
ages, respectively. The planned baseline observing strategy includes two
long pointings (2-3 years) to detect and bulk characterize planets
reaching into the habitable zone (HZ) of solar-like stars and an
additional step-and-stare phase to cover in total about 50 % of the sky.
PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize
hundreds of small planets, and thousands of planets in the Neptune to
gas giant regime out to the HZ. It will therefore provide the first
large-scale catalogue of bulk characterized planets with accurate radii,
masses, mean densities and ages. This catalogue will include terrestrial
planets at intermediate orbital distances, where surface temperatures
are moderate. Coverage of this parameter range with statistical numbers
of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0
catalogue allows us to e.g.: - complete our knowledge of planet
diversity for low-mass objects, - correlate the planet mean
density-orbital distance distribution with predictions from planet
formation theories,- constrain the influence of planet migration and
scattering on the architecture of multiple systems, and - specify how
planet and system parameters change with host star characteristics, such
as type, metallicity and age. The catalogue will allow us to study
planets and planetary systems at different evolutionary phases. It will
further provide a census for small, low-mass planets. This will serve to
identify objects which retained their primordial hydrogen atmosphere and
in general the typical characteristics of planets in such low-mass,
low-density range. Planets detected by PLATO 2.0 will orbit bright stars
and many of them will be targets for future atmosphere spectroscopy
exploring their atmosphere. Furthermore, the mission has the potential
to detect exomoons, planetary rings, binary and Trojan planets. The
planetary science possible with PLATO 2.0 is complemented by its impact
on stellar and galactic science via asteroseismology as well as light
curves of all kinds of variable stars, together with observations of
stellar clusters of different ages. This will allow us to improve
stellar models and study stellar activity. A large number of well-known
ages from red giant stars will probe the structure and evolution of our
Galaxy. Asteroseismic ages of bright stars for different phases of
stellar evolution allow calibrating stellar age-rotation relationships.
Together with the results of ESA's Gaia mission, the results of PLATO
2.0 will provide a huge legacy to planetary, stellar and galactic
science.
Proyectos relacionados
Sismología Solar y Estelar y Búsqueda de Exoplanetas
Los objetivos genéricos de este Proyecto son: 1) el estudio de la estructura y dinámica del interior solar, 2) la extensión de dicho estudio al caso de otras estrellas, 3) la búsqueda y caracterización de planetas extrasolares por métodos fotométricos (principalmente mediante el método de tránsitos) y espectroscópico (variaciones en la velocidad
Savita
Mathur
Exoplanetas y Astrobiología
La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances
Enric
Pallé Bago