Probing Seismic Solar Analogues Through Observations With The Nasa Kepler Space Telescope And Hermes High-Resolution Spectrograph

Beck, P. G.; Salabert, D.; Garcia, R. A.; do Nascimento, J., Jr.; Duarte, T. S. S.; Mathis, S.; Regulo, C.; Ballot, J.; Egeland, R.; Castro, M.; Pérez-Herńandez, F.,; Creevey, O.; Tkachenko, A.; van Reeth, T.; Bigot, L.; Corsaro, E.; Metcalfe, T.; Mathur, S.; Palle, P. L.; Allende Prieto, C.; Montes, D.; Johnston, C.; Andersen, M. F.; van Winckel, H.
Referencia bibliográfica

The 19th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (CS19), Uppsala, Sweden, 06-10 June 2016, id.42

Fecha de publicación:
11
2016
Número de autores
24
Número de autores del IAC
4
Número de citas
1
Número de citas referidas
1
Descripción
Stars similar to the Sun, known as solar analogues, provide an excellent opportunity to study the preceding and following evolutionary phases of our host star. The unprecedented quality of photometric data collected by the Kepler NASA mission allows us to characterise solar-like stars through asteroseismology and study diagnostics of stellar evolution, such as variation of magnetic activity, rotation and the surface lithium abundance. In this project, presented in a series of papers by Salabert et al (2016ab) and Beck et al. (2016ab), we investigate the link between stellar activity, rotation, lithium abundance and oscillations in a group of 18 solar-analogue stars through space photometry, obtained with the NASA Kepler space telescope and from currently 50+ hours of ground-based, high-resolution spectroscopy with the Hermes instrument. In these proceedings, we first discuss the selection of the stars in the sample, observations and calibrations and then summarise the main results of the project. By investigating the chromospheric and photospheric activity of the solar analogues in this sample, it was shown that for a large fraction of these stars the measured activity levels are compatible to levels of the 11-year solar activity cycle 23. A clear correlation between the lithium abundance and surface rotation was found for rotation periods shorter than the solar value. Comparing the lithium abundance measured in the solar analogues to evolutionary models with the Toulouse-Geneva Evolutionary Code (TGEC), we found that the solar models calibrated to the Sun also correctly describe the set of solar/stellar analogs showing that they share the same internal mixing physics. Finally, the star KIC3241581 and KIC10644353 are discussed in more detail.