Bibcode
Quirion, P.-O.; Benomar, O.; Vauclair, S.; Appourchaux, T.; Auvergne, M.; Baglin, A.; Barban, C.; Baudin, F.; Bazot, M.; Campante, T.; Catala, C.; Chaplin, W.; Creevey, O.; Deheuvels, S.; Dolez, N.; Elsworth, Y.; Garcia, R.; Gaulme, P.; Mathis, S.; Mathur, S.; Mosser, B.; Regulo, C.; Roxburgh, I.; Salabert, D.; Samadi, R.; Sato, K.; Verner, G.; Hanasoge, S.; Sreenivasan, K. R.; Stahn, T.; Vauclair, G.; Bruntt, H.; Ballot, J.; Michel, E.; Gizon, L.
Referencia bibliográfica
Proceedings of the National Academy of Sciences, vol. 110, issue 33, pp. 13267-13271
Fecha de publicación:
8
2013
Número de citas
54
Número de citas referidas
39
Descripción
Rotation is thought to drive cyclic magnetic activity in the Sun and
Sun-like stars. Stellar dynamos, however, are poorly understood owing to
the scarcity of observations of rotation and magnetic fields in stars.
Here, inferences are drawn on the internal rotation of a distant
Sun-like star by studying its global modes of oscillation. We report
asteroseismic constraints imposed on the rotation rate and the
inclination of the spin axis of the Sun-like star HD 52265, a principal
target observed by the CoRoT satellite that is known to host a planetary
companion. These seismic inferences are remarkably consistent with an
independent spectroscopic observation (rotational line broadening) and
with the observed rotation period of star spots. Furthermore,
asteroseismology constrains the mass of exoplanet HD 52265b. Under the
standard assumption that the stellar spin axis and the axis of the
planetary orbit coincide, the minimum spectroscopic mass of the planet
can be converted into a true mass of 1.85 (+0.52,-0.42) M_Jupiter, which
implies that it is a planet, not a brown dwarf.