Bibcode
DOI
Berger, E.; Gizis, J. E.; Giampapa, M. S.; Rutledge, R. E.; Liebert, J.; Martín, E.; Basri, G.; Fleming, T. A.; Johns-Krull, C. M.; Phan-Bao, N.; Sherry, W. H.
Referencia bibliográfica
The Astrophysical Journal, Volume 673, Issue 2, pp. 1080-1087.
Fecha de publicación:
2
2008
Revista
Número de citas
76
Número de citas referidas
70
Descripción
We present the first simultaneous radio, X-ray, ultraviolet, and optical
spectroscopic observations of the M8.5 dwarf TVLM 513-46546, with a
duration of 9 hr. These observations are part of a program to study the
origin of magnetic activity in ultracool dwarfs, and its impact on
chromospheric and coronal emission. Here we detect steady quiescent
radio emission superposed with multiple short-duration, highly polarized
flares; there is no evidence for periodic bursts previously reported for
this object, indicating their transient nature. We also detect soft
X-ray emission, with LX/Lbol~10-5.1,
the faintest to date for any object later than M5, and a possible X-ray
flare. TVLM 513-46546 continues the trend of severe violation of the
radio/X-ray correlation in ultracool dwarfs, by nearly 4 orders of
magnitude. From the optical spectroscopy we find that the Balmer line
luminosity exceeds the X-ray luminosity by a factor of a few, ruling out
chromospheric heating by coronal X-ray emission. More importantly, we
detect sinusoidal Hα and Hβ equivalent width light curves
with a period of 2 hr, matching the rotation period of TVLM 513-46546.
This behavior points to a corotating chromospheric hot spot or an
extended magnetic structure, with a covering fraction of about 50%. This
feature may be transitory based on the apparent decline in light-curve
peak during the four observed maxima. From the radio data we infer a
large-scale and steady magnetic field of ~102 G. A
large-scale field is also required by the sinusoidal Balmer line
emission. The radio flares, on the other hand, are produced in a
component of the field with a strength of ~3 kG and a likely multipolar
configuration. The overall lack of correlation between the various
activity indicators suggests that the short-duration radio flares do not
have a strong influence on the chromosphere and corona, and that the
chromospheric emission is not the result of coronal heating.