Spectral analysis of the barium central star of the planetary nebula Hen 2-39

Löbling, L.; Boffin, H. M. J.; Jones, D.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 624, id.A1, 26 pp.

Fecha de publicación:
4
2019
Número de autores
3
Número de autores del IAC
1
Número de citas
5
Número de citas referidas
4
Descripción
Context. Barium stars are peculiar red giants characterized by an overabundance of the elements synthesized in the slow neutron-capture nucleosynthesis (s-process elements) along with an enrichment in carbon. These stars are discovered in binaries with white dwarf companions. The more recently formed of these stars are still surrounded by a planetary nebula. Aims: Precise abundance determinations of the various s-process elements, of further key elements that act as indicators for effectiveness of nucleosynthesis on the asymptotic giant branch and, especially, of the lightest, short-lived radionuclide technetium will establish constraints for the formation of s-process elements in asymptotic giant branch stars as well as mass transfer through, for example, stellar wind, Roche-lobe overflow, and common-envelope evolution. Methods: We performed a detailed spectral analysis of the K-type subgiant central star of the planetary nebula Hen 2-39 based on high-resolution optical spectra obtained with the Ultraviolet and Visual Echelle Spectrograph at the Very Large Telescope using local thermodynamic equilibrium model atmospheres. Results: We confirm the effective temperature of Teff = (4350 ± 150) K for the central star of the planetary nebula Hen 2-39. It has a photospheric carbon enrichment of [C/H] = 0.36 ± 0.08 and a barium overabundance of [Ba/Fe] = 1.8 ± 0.5. We find a deficiency for most of the iron-group elements (calcium to iron) and establish an upper abundance limit for technetium (log ɛTc < 2.5). Conclusions: The quality of the available optical spectra is not sufficient to measure abundances of all s-process elements accurately. Despite large uncertainties on the abundances as well as on the model yields, the derived abundances are most consistent with a progenitor mass in the range 1.75-3.00 M⊙ and a metallicity of [Fe/H] = -0.3 ± 1.0. This result leads to the conclusion that the formation of such systems requires a relatively large mass transfer that is most easily obtained via wind-Roche lobe overflow. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 093.D-0332(A).
Proyectos relacionados
Izquierda - Imagen RGB de la nebulosa de Orión y M43 obtenida filtros estrechos con la cámara WFC en el INT: H alfa (rojo), [S II] 6716+30 (verde), [O III] 5007 (azul). Derecha - Imagen en falso color de la nebulosa planetaria NGC 6778. En azul se ve la emisión en la línea de O II tomada con el filtro sintonizable azul del instrumento OSIRIS en el GTC; en verde imagen con el filtro estrecho de [O III] del Nordic Optical Telescope (NOT).
Física de Nebulosas Ionizadas
Este proyecto mantiene dos líneas principales de investigación activas: 1) Estudio de la estructura, condiciones físicas y composición química de las nebulosas ionizadas, tanto galácticas como extragalácticas, a través del análisis detallado y modelización de sus espectros. Investigación de los gradientes de composición química a lo largo del disco
Jorge
García Rojas