The spectroscopic Hertzsprung-Russell diagram of Galactic massive stars

Castro, N.; Fossati, L.; Langer, N.; Simón-Díaz, S.; Schneider, F. R. N.; Izzard, R. G.
Referencia bibliográfica

Astronomy and Astrophysics, Volume 570, id.L13, 5 pp.

Fecha de publicación:
10
2014
Número de autores
6
Número de autores del IAC
1
Número de citas
112
Número de citas referidas
98
Descripción
The distribution of stars in the Hertzsprung-Russell diagram narrates their evolutionary history and directly assesses their properties. Placing stars in this diagram however requires the knowledge of their distances and interstellar extinctions, which are often poorly known for Galactic stars. The spectroscopic Hertzsprung-Russell diagram (sHRD) tells similar evolutionary tales, but is independent of distance and extinction measurements. Based on spectroscopically derived effective temperatures and gravities of almost 600 stars, we derive for the first time the observational distribution of Galactic massive stars in the sHRD. While biases and statistical limitations in the data prevent detailed quantitative conclusions at this time, we see several clear qualitative trends. By comparing the observational sHRD with different state-of-the-art stellar evolutionary predictions, we conclude that convective core overshooting may be mass-dependent and, at high mass (≳15 M⊙), stronger than previously thought. Furthermore, we find evidence for an empirical upper limit in the sHRD for stars with Teff between 10 000 and 32 000 K and, a strikingly large number of objects below this line. This over-density may be due to inflation expanding envelopes in massive main-sequence stars near the Eddington limit. Appendix A is available in electronic form at http://www.aanda.org
Proyectos relacionados
Imagen Proyecto IACOB
Proyecto IACOB: Una Nueva Era en el Estudio de Estrellas OB Galácticas
Massive stars has been many times claimed as Cosmic Engines and Gifts of Nature for the study of the Universe, from the Solar neighbourhood to the large-z Universe. The complete understanding of the physical properties and evolution of massive stars (and their interplay with the ISM) is crucial for many fields of Astrophysics and, ultimately, to
Sergio
Simón Díaz