Bibcode
Harrington, Joseph; Jenkins, James; Challener, Ryan C.; Kurtovic, Nicolás T.; Ramirez, Ricardo; Peña Zamudio, José; McIntyre, Kathleen J.; Himes, Michael D.; Rodríguez, Eloy; Anglada-Escudé, Guillem; Dreizler, Stefan; Ofir, Aviv; Ribas, Ignasi; Rojo, Patricio; Kipping, David; Butler, R. Paul; Amado, Pedro J.; Rodríguez-López, Cristina; Kempton, Eliza M.; Palle, Enric; Murgas, Felipe
Referencia bibliográfica
American Astronomical Society, DPS meeting #50, id.405.09
Fecha de publicación:
10
2018
Número de citas
0
Número de citas referidas
0
Descripción
Proxima Centauri, the nearest star to the sun, hosts a habitable-zone
planet (Anglada-Escude' et al. 2016 Nature 536, 437). Several teams have
sought Proxima b's transits using ground-based photometry, and have
reported tentative transit detections (Liu et al. 2018 AJ 155, 12; Blank
et al. 2018 AJ 155, 228; others). Proxima, a modest-sized M-dwarf star,
flares at the 0.5% level (the predicted Proxima b transit depth) 63
times per day, according to our team's prior analysis of optical
photometry from the Microvariability and Oscillations of STars
spacecraft (Davenport et al. 2016 ApJL 829, L31). This dramatically
limits optical precision. However, the effect of flares is much reduced
in the infrared. We observed the system with the Spitzer Space
Telescope's Infrared Array Camera in November 2016. Our first
observation was a 48-hour stare at 4.5 um. It was centered on the
predicted transit and covered the 99% credible region for the transit
time, based on the discovery radial-velocity (RV) data. Despite a
transit-depth precision of 0.01% for a 1 hour transit, we did not
detect the predicted 0.5% transit. There was structure in the light
curve, including some asymmetric transit-like features, that led us to
conduct follow-up observations in May, June, July, and November 2017.
None of these observations contained detections, once we accounted for a
new manifestation of systematics due to spacecraft vibration. Our
improved methods for identifying and partly removing this effect is the
topic of the next presentation. This work is based on observations made
with the Spitzer Space Telescope, which is operated by the Jet
Propulsion Laboratory, California Institute of Technology under a
contract with NASA. We acknowledge support from: NASA Planetary
Atmospheres Program grant NNX12AI69G, NASA Astrophysics Data Analysis
Program grant NNX13AF38G. CATA-Basal/Chile PB06 Conicyt and
Fondecyt/Chile project #1161218 (JSJ). Spanish MINECO programs
AYA2016-79245-C03-03-P (PJA, CRL, and ER) and ESP2017-87676-C05-02-R
(ER).
Proyectos relacionados
Exoplanetas y Astrobiología
La búsqueda de vida en el Universo se ha visto impulsada por los recientes descubrimientos de planetas alrededor de otras estrellas (los llamados exoplanetas), convirtiéndose en uno de los campos más activos dentro de la Astrofísica moderna. En los últimos años los descubrimientos cada vez más numerosos de nuevos exoplanetas y los últimos avances
Enric
Pallé Bago