Stardust-NExT, Deep Impact, and the accelerating spin of 9P/Tempel 1

Belton, Michael J. S.; Meech, Karen J.; Chesley, Steven; Pittichová, Jana; Carcich, Brian; Drahus, Michal; Harris, Alan; Gillam, Stephen; Veverka, Joseph; Mastrodemos, Nicholas; Owen, William; A'Hearn, Michael F.; Bagnulo, S.; Bai, J.; Barrera, L.; Bastien, Fabienne; Bauer, James M.; Bedient, J.; Bhatt, B. C.; Boehnhardt, Hermann; Brosch, N.; Buie, Marc; Candia, Pablo; Chen, W.-P.; Chiang, P.; Choi, Young-Jun; Cochran, A.; Crockett, Christopher J.; Duddy, S.; Farnham, Tony; Fernández, Yan R.; Gutiérrez, Pedro; Hainaut, Olivier R.; Hampton, Donald; Herrmann, Kimberly A.; Hsieh, Henry; Kadooka, M. A.; Kaluna, H.; Keane, J.; Kim, M.-J.; Klaasen, Kenneth; Kleyna, J.; Krisciunas, Kevin; Lara, Luisa M.; Lauer, Tod R.; Li, Jian-Yang; Licandro, J.; Lisse, Carey M.; Lowry, Stephen C.; McFadden, Lucy; Moskovitz, N.; Mueller, Beatrice; Polishook, D.; Raja, N. S.; Riesen, T.; Sahu, D. K.; Samarasinha, Nalin; Sarid, G.; Sekiguchi, Tomohiko; Sonnett, S.; Suntzeff, Nicholas B.; Taylor, Brian W.; Thomas, Peter; Tozzi, Gian Paolo; Vasundhara, R.; Vincent, J.-B.; Wasserman, Lawrence H.; Webster-Schultz, Bryant; Yang, B.; Zenn, T.; Zhao, H.
Referencia bibliográfica

Icarus, Volume 213, Issue 1, p. 345-368.

Fecha de publicación:
5
2011
Revista
Número de autores
71
Número de autores del IAC
1
Número de citas
54
Número de citas referidas
45
Descripción
The evolution of the spin rate of Comet 9P/Tempel 1 through two perihelion passages (in 2000 and 2005) is determined from 1922 Earth-based observations taken over a period of 13 year as part of a World-Wide observing campaign and from 2888 observations taken over a period of 50 days from the Deep Impact spacecraft. We determine the following sidereal spin rates (periods): 209.023 ± 0.025°/dy (41.335 ± 0.005 h) prior to the 2000 perihelion passage, 210.448 ± 0.016°/dy (41.055 ± 0.003 h) for the interval between the 2000 and 2005 perihelion passages, 211.856 ± 0.030°/dy (40.783 ± 0.006 h) from Deep Impact photometry just prior to the 2005 perihelion passage, and 211.625 ± 0.012°/dy (40.827 ± 0.002 h) in the interval 2006-2010 following the 2005 perihelion passage. The period decreased by 16.8 ± 0.3 min during the 2000 passage and by 13.7 ± 0.2 min during the 2005 passage suggesting a secular decrease in the net torque. The change in spin rate is asymmetric with respect to perihelion with the maximum net torque being applied on approach to perihelion. The Deep Impact data alone show that the spin rate was increasing at a rate of 0.024 ± 0.003°/dy/dy at JD2453530.60510 (i.e., 25.134 dy before impact), which provides independent confirmation of the change seen in the Earth-based observations.The rotational phase of the nucleus at times before and after each perihelion and at the Deep Impact encounter is estimated based on the Thomas et al. (Thomas et al. [2007]. Icarus 187, 4-15) pole and longitude system. The possibility of a 180° error in the rotational phase is assessed and found to be significant. Analytical and physical modeling of the behavior of the spin rate through of each perihelion is presented and used as a basis to predict the rotational state of the nucleus at the time of the nominal (i.e., prior to February 2010) Stardust-NExT encounter on 2011 February 14 at 20:42.We find that a net torque in the range of 0.3-2.5 × 107 kg m2 s-2 acts on the nucleus during perihelion passage. The spin rate initially slows down on approach to perihelion and then passes through a minimum. It then accelerates rapidly as it passes through perihelion eventually reaching a maximum post-perihelion. It then decreases to a stable value as the nucleus moves away from the Sun. We find that the pole direction is unlikely to precess by more than ˜1° per perihelion passage. The trend of the period with time and the fact that the modeled peak torque occurs before perihelion are in agreement with published accounts of trends in water production rate and suggests that widespread H2O out-gassing from the surface is largely responsible for the observed spin-up.
Proyectos relacionados
Imagen del Proyecto
Pequeños Cuerpos del Sistema Solar
Este Proyecto estudia las propiedades físicas y composicionales de los llamados pequeños cuerpos del Sistema Solar, que incluyen asteroides, objetos helados y cometas. Entre los grupos de mayor interés destacan los objetos trans-neptunianos (TNOs), incluyendo los objetos más lejanos detectados hasta la fecha (Extreme-TNOs o ETNOs); los cometas, y
Julia de
León Cruz