Bibcode
Dubber, Sophie C.; Mortier, Annelies; Rice, Ken; Nava, Chantanelle; Malavolta, Luca; Giles, Helen; Coffinet, Adrien; Charbonneau, David; Vanderburg, Andrew; Bonomo, Aldo S.; Boschin, Walter; Buchhave, Lars A.; Cameron, Andrew Collier; Cosentino, Rosario; Dumusque, Xavier; Ghedina, Adriano; Harutyunyan, Avet; Haywood, Raphaëlle D.; Latham, David; López-Morales, Mercedes; Micela, Giusi; Molinari, Emilio; Pepe, Francesco A.; Phillips, David; Piotto, Giampaolo; Poretti, Ennio; Sasselov, Dimitar; Sozzetti, Alessandro; Udry, Stéphane
Referencia bibliográfica
Monthly Notices of the Royal Astronomical Society
Fecha de publicación:
12
2019
Número de citas
11
Número de citas referidas
11
Descripción
We present confirmation of the planetary nature of PH-2b, as well as the first mass estimates for the two planets in the Kepler-103 system. PH-2b and Kepler-103c are both long-period and transiting, a sparsely populated category of exoplanets. We use Kepler light-curve data to estimate a radius, and then use HARPS-N radial velocities to determine the semi-amplitude of the stellar reflex motion and, hence, the planet mass. For PH-2b we recover a 3.5σ mass estimate of M_ p = 109^{+30}_{-32} M⊕ and a radius of Rp = 9.49 ± 0.16 R⊕. This means that PH-2b has a Saturn-like bulk density and is the only planet of this type with an orbital period P > 200 d that orbits a single star. We find that Kepler-103b has a mass of M_{p,b} = 11.7^{+4.31}_{-4.72} M⊕ and Kepler-103c has a mass of M_{p,c} = 58.5^{+11.2}_{-11.4} M⊕. These are 2.5σ and 5σ results, respectively. With radii of R_{p,b} = 3.49^{+0.06}_{-0.05} R⊕ and R_{p,c} = 5.45^{+0.18}_{-0.17} R⊕, these results suggest that Kepler-103b has a Neptune-like density, while Kepler-103c is one of the highest density planets with a period P > 100 d. By providing high-precision estimates for the masses of the long-period, intermediate-mass planets PH-2b and Kepler-103c, we increase the sample of long-period planets with known masses and radii, which will improve our understanding of the mass-radius relation across the full range of exoplanet masses and radii.
Proyectos relacionados
Evolución de Galaxias en Cúmulos
Las estructuras en el Universo, a todas las escalas de masa, se han formado de una forma jerárquica y principalmente producidas por fusiones de galaxias. Sin embargo, esta formación jerárquica de las galaxias está modulada por el entorno en el cual se crean y evolucionan. Mientras que las galaxias de campo presentan una evolución pasiva, los
Jairo
Méndez Abreu