Bibcode
Bodensteiner, J.; Sana, H.; Mahy, L.; Patrick, L. R.; de Koter, A.; de Mink, S. E.; Evans, C. J.; Götberg, Y.; Langer, N.; Lennon, D. J.; Schneider, F. R. N.; Tramper, F.
Referencia bibliográfica
Astronomy and Astrophysics
Fecha de publicación:
2
2020
Revista
Número de citas
38
Número de citas referidas
34
Descripción
Context. A majority of massive stars are part of binary systems, a large fraction of which will inevitably interact during their lives. Binary-interaction products (BiPs), that is, stars affected by such interaction, are expected to be commonly present in stellar populations. BiPs are thus a crucial ingredient in the understanding of stellar evolution.
Aims: We aim to identify and characterize a statistically significant sample of BiPs by studying clusters of 10 - 40 Myr, an age at which binary population models predict the abundance of BiPs to be highest. One example of such a cluster is NGC 330 in the Small Magellanic Cloud.
Methods: Using MUSE WFM-AO observations of NGC 330, we resolved the dense cluster core for the first time and were able to extract spectra of its entire massive star population. We developed an automated spectral classification scheme based on the equivalent widths of spectral lines in the red part of the spectrum.
Results: We characterize the massive star content of the core of NGC 330, which contains more than 200 B stars, 2 O stars, 6 A-type supergiants, and 11 red supergiants. We find a lower limit on the Be star fraction of 32 ± 3% in the whole sample. It increases to at least 46 ± 10% when we only consider stars brighter than V = 17 mag. We estimate an age of the cluster core between 35 and 40 Myr and a total cluster mass of 88-18+17 × 103 M☉.
Conclusions: We find that the population in the cluster core is different than the population in the outskirts: while the stellar content in the core appears to be older than the stars in the outskirts, the Be star fraction and the observed binary fraction are significantly higher. Furthermore, we detect several BiP candidates that will be subject of future studies.
Aims: We aim to identify and characterize a statistically significant sample of BiPs by studying clusters of 10 - 40 Myr, an age at which binary population models predict the abundance of BiPs to be highest. One example of such a cluster is NGC 330 in the Small Magellanic Cloud.
Methods: Using MUSE WFM-AO observations of NGC 330, we resolved the dense cluster core for the first time and were able to extract spectra of its entire massive star population. We developed an automated spectral classification scheme based on the equivalent widths of spectral lines in the red part of the spectrum.
Results: We characterize the massive star content of the core of NGC 330, which contains more than 200 B stars, 2 O stars, 6 A-type supergiants, and 11 red supergiants. We find a lower limit on the Be star fraction of 32 ± 3% in the whole sample. It increases to at least 46 ± 10% when we only consider stars brighter than V = 17 mag. We estimate an age of the cluster core between 35 and 40 Myr and a total cluster mass of 88-18+17 × 103 M☉.
Conclusions: We find that the population in the cluster core is different than the population in the outskirts: while the stellar content in the core appears to be older than the stars in the outskirts, the Be star fraction and the observed binary fraction are significantly higher. Furthermore, we detect several BiP candidates that will be subject of future studies.
Full Table D.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/634/A51
Based on observations collected at the ESO Paranal observatory under ESO program 60.A-9183(A).
Proyectos relacionados
Propiedades Físicas y Evolución de Estrellas Masivas
Las estrellas masivas son objetos claves para la Astrofísica. Estas estrellas nacen con más de 8 masas solares, lo que las condena a morir como Supernovas. Durante su rápida evolución liberan, a través de fuertes vientos estelares, gran cantidad de material procesado en su núcleo y, en determinadas fases evolutivas, emiten gran cantidad de
Sergio
Simón Díaz