Bibcode
Cazzoli, G.; Lattanzi, Valerio; Coriani, Sonia; Gauss, Jürgen; Codella, Claudio; Asensio Ramos, A.(Instituto de Astrofísica de Canarias, 38205, La Laguna, Spain) [Staff PO]; Cernicharo, José; Puzzarini, Cristina
Referencia bibliográfica
Astronomy and Astrophysics, Volume 605, id.A20, 11 pp.
Fecha de publicación:
9
2017
Revista
Número de citas
7
Número de citas referidas
7
Descripción
Context. Magnetic fields play a fundamental role in star formation
processes and the best method to evaluate their intensity is to measure
the Zeeman effect of atomic and molecular lines. However, a direct
measurement of the Zeeman spectral pattern from interstellar molecular
species is challenging due to the high sensitivity and high spectral
resolution required. So far, the Zeeman effect has been detected
unambiguously in star forming regions for very few non-masing species,
such as OH and CN. Aims: We decided to investigate the
suitability of sulfur monoxide (SO), which is one of the most abundant
species in star forming regions, for probing the intensity of magnetic
fields via the Zeeman effect. Methods: We investigated the Zeeman
effect for several rotational transitions of SO in the (sub-)mm spectral
regions by using a frequency-modulated, computer-controlled
spectrometer, and by applying a magnetic field parallel to the radiation
propagation (i.e., perpendicular to the oscillating magnetic field of
the radiation). To support the experimental determination of the g
factors of SO, a systematic quantum-chemical investigation of these
parameters for both SO and O2 has been carried out.
Results: An effective experimental-computational strategy for providing
accurate g factors as well as for identifying the rotational transitions
showing the strongest Zeeman effect has been presented. Revised g
factors have been obtained from a large number of SO rotational
transitions between 86 and 389 GHz. In particular, the rotational
transitions showing the largest Zeeman shifts are: N,J = 2, 2 ← 1,
1 (86.1 GHz), N,J = 4, 3 ← 3, 2 (159.0 GHz), N,J = 1, 1 ← 0, 1
(286.3 GHz), N,J = 2, 2 ← 1, 2 (309.5 GHz), and N,J = 2, 1 ←
1, 0 (329.4 GHz). Our investigation supports SO as a good candidate for
probing magnetic fields in high-density star forming regions.
The complete list of measured Zeeman components is only available at the
CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A20
Proyectos relacionados
Magnestismo Solar y Estelar
Los campos magnéticos son uno de los ingredientes fundamentales en la formación de estrellas y su evolución. En el nacimiento de una estrella, los campos magnéticos llegan a frenar su rotación durante el colapso de la nube molecular, y en el fin de la vida de una estrella, el magnetismo puede ser clave en la forma en la que se pierden las capas
Tobías
Felipe García