Determinación del rango de masas del objeto compacto en la estrella binaria de r-X 2S 0921-630
Distribución de masas de objetos compactos en binarias de rayos X. Las estrellas de neutrones tienen masas alrededor de 1.4 masas solares, con una dispersión muy pequeña. Por su parte, las masas medidas en agujeros negros están alrededor de 10 masas sola
Se ha determinado el rango de masas del objeto compacto en la estrella binaria de r-X 2S 0921-630 (entre 2.0-4.3 masas solares), dato que se corresponde con una estrella de neutrones masiva o con un agujero negro de poca masa.
El desarrollo de la última generación de telescopios tipo Cherenkov (IACT de sus siglas en inglés) en las últimas décadas ha llevado al descubrimiento de nuevos fenómenos astrofísicos extremos en el rango de rayos gamma de muy alta energía (VHE de sus siglas en inglés, E > 100 GeV). La astronomía multi-mensajero y temporal está inevitablemente conectada a la física de fuentes transitorias emisoras de rayos gamma VHE, que muestran explosiones o periodos eruptivos de manera inesperada e impredecible en diferentes escalas de tiempo. Estas fuentes transitorias comparten a menudo procesos físicos
Las estrellas masivas, aquellas que tienen más de diez veces la masa de nuestro Sol, son el origen de la mayoría de los elementos de la tabla periódica, dando forma a la composición morfológica y química de sus galaxias anfitrionas. Sin embargo, el origen de las más luminosas y calientes entre ellas, conocidas como 'supergigantes azules', ha sido debatido durante décadas. Las supergigantes azules son estrellas enigmáticas. Primero, son numerosas, a pesar de que la física estelar convencional predice que vivan solo brevemente. Segundo, típicamente se encuentran aisladas, a pesar de que la
En los años 90, el telescopio espacial COBE descubrió que no toda la emisión de microondas de nuestra galaxia se comportaba como esperábamos. Parte de la señal captada por el satélite provenía de un desconocido proceso de emisión; éste trazaba espacialmente la distribución del polvo Galáctico, pero emitía con mayor intensidad en el rango de las microondas. Desde entonces este proceso recibe el nombre de “emisión anómala de microondas” o AME, por sus siglas en inglés. Actualmente, la principal hipótesis para explicar el origen de la AME se basa en la emisión de pequeñas moléculas de polvo