Por primera vez se han utilizado modelos evolutivos de estrellas de masa baja e intermedia (1-8 masas solares)auto-consistentes con modelos teóricos de formación de polvo para trazar la evolución de estas estrellasdurante la Rama Asíntotica de las Gigantes (AGB) en los diagramas color-color y magnitud-color del telescopio espacial Spitzer. Estos modelos son los primeros capaces de identificar las principales regiones en los diagramas Spitzer ocupadas por las estrellas AGB en la Gran Nube de Magallanes. La principal secuencia diagonal trazada por las estrellas mas extremas de la Gran Nube de Magallanes en los diagramas Spitzer color-color y magnitud-color se ajusta muy bien por los modelos de estrellas de carbono, en donde los objetos mas enrojecidos representan los ultimos estados en su evolución AGB. Las estrellas mas extremas, con colores [3.6]-[4.5] > 1.5 y [3.6]-[8.0] > 3, son estrellas de 2.5-3 masas solares rodeadas por granos de carbono solido. En las estrellas de mayor masa (> 3 masas solares), la formación de polvo esta dominada por la eficiencia del proceso de combustion caliente profunda ("Hot Bottom Burning") - la mayor parte del polvo es rico en oxígeno (en forma de silicatos) y la fase de mayor oscuración por los granos de polvo coincide con la máxima eficiencia del proceso de HBB, justo antes de que se consuma la masa de la envoltura.
Fecha de publicación
Referencias
Dell'Agli et al. 2014, MNRAS Letters, 442, L38
Otras noticias relacionadas
-
El campo magnético de la cromosfera solar desempeña un papel clave en el calentamiento de la atmósfera solar exterior y en la acumulación y liberación repentina de energía en las erupciones solares. Sin embargo, cartografiar el vector del campo magnético en la cromosfera solar es una tarea muy difícil porque el campo magnético deja sus huellas en la polarización muy tenue de la luz, la cual no es nada fácil medir e interpretar. Analizamos las observaciones espectropolarimétricas obtenidas con el “Chromospheric LAyer Spectro-Polarimeter” (CLASP) a bordo de un cohete sonda. Este experimentoFecha de publicación
-
La formación y evolución del disco de nuestra galaxia, la Vía Láctea, sigue siendo un enigma en la astronomía. En particular, la relación entre el disco grueso y el disco delgado —dos componentes clave de la Vía Láctea— aún no está clara. Entender las propiedades químicas y dinámicas de las estrellas en estos discos es crucial, especialmente en las regiones donde sus características se superponen, como alrededor de [Fe/H] ~ -0.7, que marca el extremo pobre en metales del disco delgado, superior al del disco grueso. Esto suele interpretarse como un indicio de que el disco delgado se formó enFecha de publicación
-
La universalidad de la función inicial de masa estelar (IMF, por sus siglas en inglés) es una suposición ampliamente aceptada en la astrofísica moderna, a pesar de que puede ser errónea. Mientras que observaciones en la Vía Láctea generalmente respaldan una IMF invariable con respecto a las condiciones locales bajo las cuales se forman las estrellas, medidas en galaxias masivas de tipo temprano sistemáticamente apuntan hacia una IMF no universal. Para entender las diferencias entre ambos conjuntos de observaciones, hemos medido por primera vez el extremo de baja masa de la IMF a partir deFecha de publicación