Bibcode
Fabbian, D.; Moreno-Insertis, F.
Referencia bibliográfica
The Astrophysical Journal, Volume 802, Issue 2, article id. 96, 10 pp. (2015).
Fecha de publicación:
4
2015
Revista
Número de citas
19
Número de citas referidas
15
Descripción
The importance of magnetic fields in three-dimensional (3D)
magnetoconvection models of the Sun’s photosphere is investigated
in terms of their influence on the continuum intensity at different
viewing inclination angles and on the intensity profile of two [O i]
spectral lines. We use the RH numerical radiative transfer code to
perform a posteriori spectral synthesis on the same time series of
magnetoconvection models used in our publications on the effect of
magnetic fields on abundance determination. We obtain a good match of
the synthetic disk-center continuum intensity to the absolute continuum
values from the Fourier Transform Spectrometer (FTS) observational
spectrum; the match of the center-to-limb variation synthetic data to
observations is also good, thanks, in part, to the 3D radiation transfer
capabilities of the RH code. The different levels of magnetic flux in
the numerical time series do not modify the quality of the match.
Concerning the targeted [O i] spectral lines, we find, instead, that
magnetic fields lead to nonnegligible changes in the synthetic spectrum,
with larger average magnetic flux causing both of the lines to become
noticeably weaker. The photospheric oxygen abundance that one would
derive if instead using nonmagnetic numerical models would thus be lower
by a few to several centidex. The inclusion of magnetic fields is
confirmed to be important for improving the current modeling of the Sun,
here in particular in terms of spectral line formation and of deriving
consistent chemical abundances. These results may shed further light on
the still controversial issue regarding the precise value of the solar
oxygen abundance.
Proyectos relacionados
Simulación Numérica de Procesos Astrofísicos
La simulación numérica mediante códigos complejos de ordenador es una herramienta fundamental en la investigación física y en la técnica desde hace décadas. El crecimiento vertiginoso de las capacidades informáticas junto con el avance notable de la matemática numérica ha hecho accesible a los centros de investigación de tamaño medio
Daniel Elías
Nóbrega Siverio