Hace tres décadas, uno de los primeros telescopios espaciales capacesde captar rayos X en el espacio detectó un tipo de objeto desconocido: brillaba en rayos X más que cualquier estrella, pero mucho menos que otras fuentes identificadas, como los núcleos de galaxias activas. Con no mucha originalidad se bautizó a estos nuevos objetos fuentes X ultraluminosas (ULX). En este trabajo se ha logrado descifrar este misterio y hemos encontrado que lo que hace brillar tanto a la fuente ULX mejor estudiada (ULX P13) no es, como muchos esperaban, uno de los muy buscados agujeros negros de masa Intermedia. ULX P13 alberga un agujero negro, pero uno de tipo estelar, pequeño, de menos de 15 masas solares. ULX P13 emite tanta energía porque alberga un agujero negro que come diez veces más rápido de lo que se creía posible. Esto es posible debido a que ULX P13 es un sistema binario formado por una estrella supergigante con 20 veces la masa del Sol y el agujero negro. El agujero negro completa una órbita en torno a la estrella en 64 días, mientras absorbe parte de la masa de su compañera. Esa materia que el agujero tan rápidamente devora es la causa de la gran luminosidad del sistema. La explicación más probable para la gran avidez del agujero negro de ULX P13 es que la rápida expansión de la estrella compañera supergigante "sobrealimente" al agujero negro, forzándole a tragar materia por encima de lo que es habitual. Se descarta, por tanto, para la ULX P13 - y posiblemente para la mayoría de las fuentes ULX -, la que para muchos era la hipótesis preferida: que la causa del brillo es un agujero negro de masa Intermedia, de entre varios centenares y miles de masas solares. Estosagujeros negros medianos son muy buscados porque los modelos actuales de formación de estructuras en el Universo predicen su existencia, pero todavía no se ha detectado ninguno con certeza.
Fecha de publicación
Referencias
Motch et al. 2014, Nature, 514, 198
Otras noticias relacionadas
-
Las propiedades de las supergigantes azules son fundamentales para determinar el final de la secuencia principal, una fase en la que las estrellas masivas pasan la mayor parte de su vida. Se ha propuesto que la ausencia de estrellas de rotación rápida por debajo de 21.000K, temperatura en torno a la cual los vientos estelares cambian de comportamiento, se debe a una mayor pérdida de masa, que haría frenar a las estrellas. Otra posibilidad es que la falta de estrellas de rotación rápida se deba a que las estrellas alcanzan el final de la secuencia principal. En este trabajo combinamosFecha de publicación
-
Desde hace tiempo se sabe que los fulerenos – moléculas de carbono muy grandes y complejas, altamente resistentes y con potenciales aplicaciones en nanotecnología – están mayoritariamente presentes en nebulosas planetarias (NPs); estrellas viejas y moribundas con masas progenitoras similares al Sol. Los fulerenos (principalmente el C60 y C70) se han detectado en NPs en donde su espectro infrarrojo (IR) está dominado por bandas IR muy anchas aún no identificadas. La identificación de las especies químicas (estructura y composición) responsables de esta emisión IR que está ampliamente presenteFecha de publicación
-
El modelo jerárquico de la evolución de las galaxias sugiere que las fusiones de galaxias tienen un impacto sustancial en los intrincados procesos que impulsan el ensamblaje de la masa estelar dentro de una galaxia. Sin embargo, medir con precisión la contribución de las fusiones a la masa estelar total de una galaxia y su equilibrio con la formación estelar in situ plantea un desafío persistente, ya que no es directamente observable ni se infiere fácilmente a partir de datos observacionales. Utilizando datos de MaNGA, presentamos predicciones para la fracción de masa estelar que se originaFecha de publicación