Presentamos imágenes profundas del asteroide P/2016 G1 (PANSTARRS) obtenidas utilizando el 10.4m Gran Telescopio Canarias ( GTC) entre el final de Abril y el inicio de Junio de 2016. Los asteroides activados son objetos que se mueven en órbitas típicas de los asteroides y que dinámicamente es muy improbable que provengan de uno de los dos reservorios de donde vienen los cometas (La Nube de Oort o el cinturón transneptuniano). Las imágenes de P/2016 G1 muestran una coma de polvo similar a los cometas y fueron analizadas comparándolas con otras simuladas obtenidas utilizando un Modelo de Montecarlo de eyección de polvo. Este modelo permite crear imágenes de una cola de polvo de un objeto que está eyectando polvo utilizando diferentes condiciones iniciales (diferentes tasas de eyección de polvo, velocidad de eyección de las partículas, tamaños de las partículas eyectadas, etc.). Esto permite obtener información sobre la cantidad de polvo que ha soltado el asteroide y el mecanismo por el que ese polvo ha sido eyectado. Del modelado de las imágenes de P/2016 G1 se concluye que el asteroide eyectó polvo durante un evento de muy corta duración, que ocurrió 350+30-10 días antes del perihelio (alrededor del 10 de Febrero de 2016). La eyección fue primero muy intensa y luego decayó durante -24+10-7 días. En este tiempo según el modelo, asumiendo que las partículas tienen un albedo de 0.15 y un rango de tamaños de entre 1 μm to 1 cm de radio, el objeto habría emitido 1.7x107 kg de polvo la distribución de tamaños de las partículas seguiría una ley de potencia con índice -3. Las imágenes muestras una estructura notable hacia oeste de la coma que indica que una fracción significativa del polvo se eyectó en una misma dirección en el momento en que se inició la actividad, lo que sugiere que probablemente el asteroide sufrió un impacto seguido de una destrucción total o parcial. No se observaron fragmentos del objeto, sólo la nube de polvo que dejó, y a partir de los límites de detección de nuestras imágenes hemos podido establecer un límite superior de ~50 m para el tamaño de los fragmentos que pudieran haber sobrevivido al evento, por lo que concluimos que el asteroide se destruyó completamente ya sea por la colisión con otro asteroide o porque incrementó su rotación por encima del período crítico de destrucción rotacional.
Fecha de publicación
Referencias
Otras noticias relacionadas
-
Desde hace tiempo se sabe que los fulerenos – moléculas de carbono muy grandes y complejas, altamente resistentes y con potenciales aplicaciones en nanotecnología – están mayoritariamente presentes en nebulosas planetarias (NPs); estrellas viejas y moribundas con masas progenitoras similares al Sol. Los fulerenos (principalmente el C60 y C70) se han detectado en NPs en donde su espectro infrarrojo (IR) está dominado por bandas IR muy anchas aún no identificadas. La identificación de las especies químicas (estructura y composición) responsables de esta emisión IR que está ampliamente presenteFecha de publicación
-
Las propiedades de las supergigantes azules son fundamentales para determinar el final de la secuencia principal, una fase en la que las estrellas masivas pasan la mayor parte de su vida. Se ha propuesto que la ausencia de estrellas de rotación rápida por debajo de 21.000K, temperatura en torno a la cual los vientos estelares cambian de comportamiento, se debe a una mayor pérdida de masa, que haría frenar a las estrellas. Otra posibilidad es que la falta de estrellas de rotación rápida se deba a que las estrellas alcanzan el final de la secuencia principal. En este trabajo combinamosFecha de publicación
-
El sistema transitorio Swift J1727.8-162 es el miembro más reciente de la familia de agujeros negros en binarias de rayos-X descubierto hasta la fecha. Están formados por un agujero negro y una estrella de baja masa a la que arranca gas, que forma un disco de acreción antes de ser finalmente acretado por el agujero negro. Debido a su elevada temperatura, el disco emite luz hasta el rango de los rayos-X, brillando con especial intensidad durante épocas conocidas como erupciones. Este nuevo estudio, publicado apenas unos meses después del descubrimiento, presenta 20 épocas de espectroscopíaFecha de publicación